### Refine

#### Year of publication

- 2012 (61) (remove)

#### Document Type

- Doctoral Thesis (33)
- Report (12)
- Preprint (7)
- Article (4)
- Master's Thesis (2)
- Conference Proceeding (1)
- Periodical Part (1)
- Working Paper (1)

#### Language

- English (61) (remove)

#### Keywords

- Transaction Costs (2)
- Arithmetic data-path (1)
- Bildverarbeitung (1)
- Bioinformatik (1)
- Carbon footprint (1)
- Chlamydomonas reinhardii (1)
- Cloud Computing (1)
- Cohen-Lenstra heuristic (1)
- Computeralgebra (1)
- Consistent Price Processes (1)

#### Faculty / Organisational entity

In urban planning, both measuring and communicating sustainability are among the most recent concerns. Therefore, the primary emphasis of this thesis concerns establishing metrics and visualization techniques in order to deal with indicators of sustainability.
First, this thesis provides a novel approach for measuring and monitoring two indicators of sustainability - urban sprawl and carbon footprints – at the urban neighborhood scale. By designating different sectors of relevant carbon emissions as well as different household categories, this thesis provides detailed information about carbon emissions in order to estimate impacts of daily consumption decisions and travel behavior by household type. Regarding urban sprawl, a novel gridcell-based indicator model is established, based on different dimensions of urban sprawl.
Second, this thesis presents a three-step-based visualization method, addressing predefined requirements for geovisualizations and visualizing those indicator results, introduced above. This surface-visualization combines advantages from both common GIS representation and three-dimensional representation techniques within the field of urban planning, and is assisted by a web-based graphical user interface which allows for accessing the results by the public.
In addition, by focusing on local neighborhoods, this thesis provides an alternative approach in measuring and visualizing both indicators by utilizing a Neighborhood Relation Diagram (NRD), based on weighted Voronoi diagrams. Thus, the user is able to a) utilize original census data, b) compare direct impacts of indicator results on the neighboring cells, and c) compare both indicators of sustainability visually.

Recently convex optimization models were successfully applied for solving various problems in image analysis and restoration. In this paper, we are interested in relations between convex constrained optimization problems of the form \(min\{\Phi(x)\) subject to \(\Psi(x)\le\tau\}\) and their non-constrained, penalized counterparts \(min\{\Phi(x)+\lambda\Psi(x)\}\). We start with general considerations of the topic and provide a novel proof which ensures that a solution of the constrained problem with given \(\tau\) is also a solution of the on-constrained problem for a certain \(\lambda\). Then we deal with the special setting that \(\Psi\) is a semi-norm and \(\Phi=\phi(Hx)\), where \(H\) is a linear, not necessarily invertible operator and \(\phi\) is essentially smooth and strictly convex. In this case we can prove via the dual problems that there exists a bijective function which maps \(\tau\) from a certain interval to \(\lambda\) such that the solutions of the constrained problem coincide with those of the non-constrained problem if and only if \(\tau\) and \(\lambda\) are in the graph of this function. We illustrate the relation between \(\tau\) and \(\lambda\) by various problems arising in image processing. In particular, we demonstrate the performance of the constrained model in restoration tasks of images corrupted by Poisson noise and in inpainting models with constrained nuclear norm. Such models can be useful if we have a priori knowledge on the image rather than on the noise level.

The increasing complexity of modern SoC designs makes tasks of SoC formal verification
a lot more complex and challenging. This motivates the research community to develop
more robust approaches that enable efficient formal verification for such designs.
It is a common scenario to apply a correctness by integration strategy while a SoC
design is being verified. This strategy assumes formal verification to be implemented in
two major steps. First of all, each module of a SoC is considered and verified separately
from the other blocks of the system. At the second step – when the functional correctness
is successfully proved for every individual module – the communicational behavior has
to be verified between all the modules of the SoC. In industrial applications, SAT/SMT-based interval property checking(IPC) has become widely adopted for SoC verification. Using IPC approaches, a verification engineer is able to afford solving a wide range of important verification problems and proving functional correctness of diverse complex components in a modern SoC design. However, there exist critical parts of a design where formal methods often lack their robustness. State-of-the-art property checkers fail in proving correctness for a data path of an industrial central processing unit (CPU). In particular, arithmetic circuits of a realistic size (32 bits or 64 bits) – especially implementing multiplication algorithms – are well-known examples when SAT/SMT-based
formal verification may reach its capacity very fast. In cases like this, formal verification
is replaced with simulation-based approaches in practice. Simulation is a good methodology that may assure a high rate of discovered bugs hidden in a SoC design. However, in contrast to formal methods, a simulation-based technique cannot guarantee the absence of errors in a design. Thus, simulation may still miss some so-called corner-case bugs in the design. This may potentially lead to additional and very expensive costs in terms of time, effort, and investments spent for redesigns, refabrications, and reshipments of new chips.
The work of this thesis concentrates on studying and developing robust algorithms
for solving hard arithmetic decision problems. Such decision problems often originate from a task of RTL property checking for data-path designs. Proving properties of those
designs can efficiently be performed by solving SMT decision problems formulated with
the quantifier-free logic over fixed-sized bit vectors (QF-BV).
This thesis, firstly, proposes an effective algebraic approach based on a Gröbner basis theory that allows to efficiently decide arithmetic problems. Secondly, for the case of custom-designed components, this thesis describes a sophisticated modeling technique which is required to restore all the necessary arithmetic description from these components. Further, this thesis, also, explains how methods from computer algebra and the modeling techniques can be integrated into a common SMT solver. Finally, a new QF-BV SMT solver is introduced.

Today, polygonal models occur everywhere in graphical applications, since they are easy
to render and to compute and a very huge set of tools are existing for generation and
manipulation of polygonal data. But modern scanning devices that allow a high quality
and large scale acquisition of complex real world models often deliver a large set of
points as resulting data structure of the scanned surface. A direct triangulation of those
point clouds does not always result in good models. They often contain problems like
holes, self-intersections and non manifold structures. Also one often looses important
surface structures like sharp corners and edges during a usual surface reconstruction.
So it is suitable to stay a little longer in the point based world to analyze the point cloud
data with respect to such features and apply a surface reconstruction method afterwards
that is known to construct continuous and smooth surfaces and extend it to reconstruct
sharp features.

Annual Report 2011
(2012)

Annual Report, Jahrbuch AG Magnetismus

Capital budgeting or investment decisions have an essential influence on companies’ performance. Instead of a rational choice, capital budgeting might be regarded as a process of reality construction. Research suggests that decision makers have only limited control over their own cognitive biases in this construction process. It is in this perspective that this paper intends to answer the following research question: What are behavioral determinants for a successful capital-budgeting decision process? The authors identify and discuss three behavioral success factors (reflective prudence, critical communication and outcome independence) for five stages of the capital budgeting process against the backdrop of the findings of the managerial and organizational cognition theory and cognitive psychology.

Predicting secondary structures of RNA molecules is one of the fundamental problems of and thus a challenging task in computational structural biology. Existing prediction methods basically use the dynamic programming principle and are either based on a general thermodynamic model or on a specific probabilistic model, traditionally realized by a stochastic context-free grammar. To date, the applied grammars were rather simple and small and despite the fact that statistical approaches have become increasingly appreciated over the past years, a corresponding sampling algorithm based on a stochastic RNA structure model has not yet been devised. In addition, basically all popular state-of-the-art tools for computational structure prediction have the same worst-case time and space requirements of O(n^3) and O(n^2) for sequence length n, limiting their applicability for practical purposes due to the often quite large sizes of native RNA molecules. Accordingly, the prime demand imposed by biologists on computational prediction procedures is to reach a reduced waiting time for results that are not significantly less accurate.
We here deal with all of these issues, by describing algorithms and performing comprehensive studies that are based on sophisticated stochastic context-free grammars of similar complexity as those underlying thermodynamic prediction approaches, where all of our methods indeed make use of the concept of sampling. We also employ the approximation technique known from theoretical computer science in order to reach a heuristic worst-case speedup for RNA folding.
Particularly, we start by describing a way for deriving a sequence-independent random sampler for an arbitrary class of RNAs by means of (weighted) unranking. The resulting algorithm may generate any secondary structure of a given fixed size n in only O(n·log(n)) time, where the results are observed to be accurate, validating its practical applicability.
With respect to RNA folding, we present a novel probabilistic sampling algorithm that generates statistically representative and reproducible samples of the entire ensemble of feasible structures for a particular input sequence. This method actually samples the possible foldings from a distribution implied by a suitable (traditional or length-dependent) grammar. Notably, we also propose several (new) ways for obtaining predictions from generated samples. Both variants have the same worst-case time and space complexities of O(n^3) and O(n^2) for sequence length n. Nevertheless, evaluations of our sampling methods show that they are actually capable of producing accurate (prediction) results.
In an attempt to resolve the long-standing problem of reducing the time complexity of RNA folding algorithms without sacrificing much of the accuracy of the results, we invented an innovative heuristic statistical sampling method that can be implemented to require only O(n^2) time for generating a fixed-size sample of candidate structures for a given sequence of length n. Since a reasonable prediction can still efficiently be obtained from the generated sample set, this approach finally reduces the worst-case time complexity by a liner factor compared to all existing precise methods. Notably, we also propose a novel (heuristic) sampling strategy as opposed to the common one typically applied for statistical sampling, which may produce more accurate results for particular settings. A validation of our heuristic sampling approach by comparison to several leading RNA secondary structure prediction tools indicates that it is capable of producing competitive predictions, but may require the consideration of large sample sizes.

The scientific aim of this work was to synthesize and characterize new bidentate and tridentate phosphine ligands , their corresponding palladium complexes and to examine their application as homogenous catalysts. Later on, a part of the obtained palladium catalysts was immobilized and used as heterogonous catalyst.
Pyrimidinyl functionalized diphenyl phosphine ligands were synthesized by ring closure of [2-(3-dimethylamino-1-oxoprop-2-en-yl)phenyl]diphenylphosphine with an excess of substituted guanidinium salts. Furthermore to increase the electron density at phosphorous centre the two aryl substituents on the phosphanyl group were exchanged against two alkyl substituents. Electron rich pyrimidinyl functionalized dialkyl phosphine ligands were synthesized from pyrimidinyl functionalized bromobenzene in a process involving lithiation followed by reaction with a chlorodialkylphosphine.
Starting from the new synthesized diaryl phosphine ligands, their corresponding palladium complexes were synthesized. I was able to show that slight changes at the amino group of [(2-aminopyrimidin-4-yl)aryl]phosphines lead to pronounced differences in the stability and catalytic activity of the corresponding palladium(II) complexes. Having a P,C coordination mode, the palladium complex can catalyze rapidly the Suzuki coupling reaction of phenylbronic acid with arylbromides even at room temperature with a low loading.
Using the NH2 group of the aminopyrimidine as a potential site for the introduction of an other substituent, bidentate and tridentate ligands containing phosphorous atoms connected to the aminopyrimidine group and their corresponding palladium complexes were synthesized and characterized.
Two ligands [2- and 4-(4-(2-amino)pyrimidinyl)phenyl]diphenylphosphine (containing NH2 group) functionalized with a ethoxysilane group were synthesized. The palladium complexes based on these ligands were prepared and immobilized on commercial silica and MCM-41. Using elemental analysis, FT-IR, solid state 31P, 13C and 29Si CP–MAS NMR spectroscopy, XRD and N2 adsorption the success of the immobilization was confirmed and the structure of the heterogenized catalyst was investigated.
The resulting heterogeneous catalysts were applied for the Suzuki reaction and exhibited excellent activity, selectivity and reusability.

The safety of embedded systems is becoming more and more important nowadays. Fault Tree Analysis (FTA) is a widely used technique for analyzing the safety of embedded systems. A standardized tree-like structure called a Fault Tree (FT) models the failures of the systems. The Component Fault Tree (CFT) provides an advanced modeling concept for adapting the traditional FTs to the hierarchical architecture model in system design. Minimal Cut Set (MCS) analysis is a method that works for qualitative analysis based on the FTs. Each MCS represents a minimal combination of component failures of a system called basic events, which may together cause the top-level system failure. The ordinary representations of MCSs consist of plain text and data tables with little additional supporting visual and interactive information. Importance analysis based on FTs or CFTs estimates the contribution of each potential basic event to a top-level system failure. The resulting importance values of basic events are typically represented in summary views, e.g., data tables and histograms. There is little visual integration between these forms and the FT (or CFT) structure. The safety of a system can be improved using an iterative process, called the safety improvement process, based on FTs taking relevant constraints into account, e.g., cost. Typically, relevant data regarding the safety improvement process are presented across multiple views with few interactive associations. In short, the ordinary representation concepts cannot effectively facilitate these analyses.
We propose a set of visualization approaches for addressing the issues above mentioned in order to facilitate those analyses in terms of the representations.
Contribution:
1. To support the MCS analysis, we propose a matrix-based visualization that allows detailed data of the MCSs of interest to be viewed while maintaining a satisfactory overview of a large number of MCSs for effective navigation and pattern analysis. Engineers can also intuitively analyze the influence of MCSs of a CFT.
2. To facilitate the importance analysis based on the CFT, we propose a hybrid visualization approach that combines the icicle-layout-style architectural views with the CFT structure. This approach facilitates to identify the vulnerable components taking the hierarchies of system architecture into account and investigate the logical failure propagation of the important basic events.
3. We propose a visual safety improvement process that integrates an enhanced decision tree with a scatter plot. This approach allows one to visually investigate the detailed data related to individual steps of the process while maintaining the overview of the process. The approach facilitates to construct and analyze improvement solutions of the safety of a system.
Using our visualization approaches, the MCS analysis, the importance analysis, and the safety improvement process based on the CFT can be facilitated.

Recently convex optimization models were successfully applied
for solving various problems in image analysis and restoration.
In this paper, we are interested in relations between
convex constrained optimization problems
of the form
\({\rm argmin} \{ \Phi(x)\) subject to \(\Psi(x) \le \tau \}\)
and their penalized counterparts
\({\rm argmin} \{\Phi(x) + \lambda \Psi(x)\}\).
We recall general results on the topic by the help of an epigraphical projection.
Then we deal with the special setting \(\Psi := \| L \cdot\|\) with \(L \in \mathbb{R}^{m,n}\)
and \(\Phi := \varphi(H \cdot)\),
where \(H \in \mathbb{R}^{n,n}\) and \(\varphi: \mathbb R^n \rightarrow \mathbb{R} \cup \{+\infty\} \)
meet certain requirements which are often fulfilled in image processing models.
In this case we prove by incorporating the dual problems
that there exists a bijective function
such that
the solutions of the constrained problem coincide with those of the
penalized problem if and only if \(\tau\) and \(\lambda\) are in the graph
of this function.
We illustrate the relation between \(\tau\) and \(\lambda\) for various problems
arising in image processing.
In particular, we point out the relation to the Pareto frontier for joint sparsity problems.
We demonstrate the performance of the
constrained model in restoration tasks of images corrupted by Poisson noise
with the \(I\)-divergence as data fitting term \(\varphi\)
and in inpainting models with the constrained nuclear norm.
Such models can be useful if we have a priori knowledge on the image rather than on the noise level.