### Refine

#### Year of publication

- 2008 (66) (remove)

#### Document Type

- Doctoral Thesis (33)
- Report (21)
- Preprint (8)
- Study Thesis (2)
- Periodical Part (1)
- Working Paper (1)

#### Language

- English (66) (remove)

#### Keywords

- Finite-Elemente-Methode (3)
- Computergraphik (2)
- Level-Set-Methode (2)
- Raumakustik (2)
- Room acoustics (2)
- Visualisierung (2)
- computer graphics (2)
- domain decomposition (2)
- energy minimization (2)
- free surface (2)

#### Faculty / Organisational entity

A Lattice Boltzmann Method for immiscible multiphase flow simulations using the Level Set Method
(2008)

We consider the lattice Boltzmann method for immiscible multiphase flow simulations. Classical lattice Boltzmann methods for this problem, e.g. the colour gradient method or the free energy approach, can only be applied when density and viscosity ratios are small. Moreover, they use additional fields defined on the whole domain to describe the different phases and model phase separation by special interactions at each node. In contrast, our approach simulates the flow using a single field and separates the fluid phases by a free moving interface. The scheme is based on the lattice Boltzmann method and uses the level set method to compute the evolution of the interface. To couple the fluid phases, we develop new boundary conditions which realise the macroscopic jump conditions at the interface and incorporate surface tension in the lattice Boltzmann framework. Various simulations are presented to validate the numerical scheme, e.g. two-phase channel flows, the Young-Laplace law for a bubble and viscous fingering in a Hele-Shaw cell. The results show that the method is feasible over a wide range of density and viscosity differences.

The theory of the two-scale convergence was applied to homogenization of elasto-plastic composites with a periodic structure and exponential hardening law. The theory is based on the fact that the elastic as well as the plastic part of the stress field two-scale converges to a limit, which is factorized by parts, depending only on macroscopic characteristics, represented in terms of corresponding part of the homogenised stress tensor and only on stress concentration tensor, related to the micro-geometry and elastic or plastic micro-properties of composite components. The theory was applied to metallic matrix material with Ludwik and Hocket-Sherby hardening law and pure elastic inclusions in two numerical examples. Results were compared with results of mechanical averaging based on the self-consistent methods.

The purpose of this paper is the canonical connection of classical global gravity field determination following the concept of Stokes (1849), Bruns (1878), and Neumann (1887) on the one hand and modern locally oriented multiscale computation by use of adaptive locally supported wavelets on the other hand. Essential tools are regularization methods of the Green, Neumann, and Stokes integral representations. The multiscale approximation is guaranteed simply as linear difference scheme by use of Green, Neumann, and Stokes wavelets, respectively. As an application, gravity anomalies caused by plumes are investigated for the Hawaiian and Iceland areas.

In many medical, financial, industrial, e.t.c. applications of statistics, the model parameters may undergo changes at unknown moment of time. In this thesis, we consider change point analysis in a regression setting for dichotomous responses, i.e. they can be modeled as Bernoulli or 0-1 variables. Applications are widespread including credit scoring in financial statistics and dose-response relations in biometry. The model parameters are estimated using neural network method. We show that the parameter estimates are identifiable up to a given family of transformations and derive the consistency and asymptotic normality of the network parameter estimates using the results in Franke and Neumann Franke Neumann (2000). We use a neural network based likelihood ratio test statistic to detect a change point in a given set of data and derive the limit distribution of the estimator using the results in Gombay and Horvath (1994,1996) under the assumption that the model is properly specified. For the misspecified case, we develop a scaled test statistic for the case of one-dimensional parameter. Through simulation, we show that the sample size, change point location and the size of change influence change point detection. In this work, the maximum likelihood estimation method is used to estimate a change point when it has been detected. Through simulation, we show that change point estimation is influenced by the sample size, change point location and the size of change. We present two methods for determining the change point confidence intervals: Profile log-likelihood ratio and Percentile bootstrap methods. Through simulation, the Percentile bootstrap method is shown to be superior to profile log-likelihood ratio method.

We develop a framework for analyzing an executive’s own-company stockholding and work effort preferences. The executive, characterized by risk aversion and work effectiveness parameters, invests his personal wealth without constraint in the financial market, including the stock of his own company whose value he can directly influence with work effort. The executive’s utility-maximizing personal investment and work effort strategy is derived in closed-form, and an indifference utility rationale is demonstrated to determine his required compensation. Our results have implications for the practical and theoretical assessment of executive quality and the benefits of performance contracting. Assuming knowledge of the company’s non-systematic risk, our executive’s unconstrained own-company investment identifies his work effectiveness (i.e. quality), and also reflects work effort that establishes a base-level that performance contracting should seek to exceed.

We study the complexity of finding extreme pure Nash equilibria in symmetric network congestion games and analyse how it depends on the graph topology and the number of users. In our context best and worst equilibria are those with minimum respectively maximum total latency. We establish that both problems can be solved by a Greedy algorithm with a suitable tie breaking rule on parallel links. On series-parallel graphs finding a worst Nash equilibrium is NP-hard for two or more users while finding a best one is solvable in polynomial time for two users and NP-hard for three or more. Additionally we establish NP-hardness in the strong sense for the problem of finding a worst Nash equilibrium on a general acyclic graph.

In this work we study and investigate the minimum width annulus problem (MWAP), the circle center location or circle location problem (CLP) and the point center location or point location problem (PLP) on Rectilinear and Chebyshev planes as well as in networks. The relations between the problems have served as a basis for finding of elegant solution, algorithms for both new and well known problems. So, MWAP was formulated and investigated in Rectilinear space. In contrast to Euclidean metric, MWAP and PLP have at least one common optimal point. Therefore, MWAP on Rectilinear plane was solved in linear time with the help of PLP. Hence, the solution sequence was PLP-->MWAP. It was shown, that MWAP and CLP are equivalent. Thus, CLP can be also solved in linear time. The obtained results were analysed and transfered to Chebyshev metric. After that, the notions of circle, sphere and annulus in networks were introduced. It should be noted that the notion of a circle in a network is different from the notion of a cycle. An O(mn) time algorithm for solution of MWAP was constructed and implemented. The algorithm is based on the fact that the middle point of an edge represents an optimal solution of a local minimum width annulus on this edge. The resulting complexity is better than the complexity O(mn+n^2logn) in unweighted case of the fastest known algorithm for minimizing of the range function, which is mathematically equivalent to MWAP. MWAP in unweighted undirected networks was extended to the MWAP on subsets and to the restricted MWAP. Resulting problems were analysed and solved. Also the p–minimum width annulus problem was formulated and explored. This problem is NP–hard. However, the p–MWAP has been solved in polynomial O(m^2n^3p) time with a natural assumption, that each minimum width annulus covers all vertexes of a network having distances to the central point of annulus less than or equal to the radius of its outer circle. In contrast to the planar case MWAP in undirected unweighted networks have appeared to be a root problem among considered problems. During investigation of properties of circles in networks it was shown that the difference between planar and network circles is significant. This leads to the nonequivalence of CLP and MWAP in the general case. However, MWAP was effectively used in solution procedures for CLP giving the sequence MWAP-->CLP. The complexity of the developed and implemented algorithm is of order O(m^2n^2). It is important to mention that CLP in networks has been formulated for the first time in this work and differs from the well–studied location of cycles in networks. We have constructed an O(mn+n^2logn) algorithm for well–known PLP. The complexity of this algorithm is not worse than the complexity of the currently best algorithms. But the concept of the solution procedure is new – we use MWAP in order to solve PLP building the opposite to the planar case solution sequence MWAP-->PLP and this method has the following advantages: First, the lower bounds LB obtained in the solution procedure are proved to be in any case better than the strongest Halpern’s lower bound. Second, the developed algorithm is so simple that it can be easily applied to complex networks manually. Third, the empirical complexity of the algorithm is equal to O(mn). MWAP was extended to and explored in directed unweighted and weighted networks. The complexity bound O(n^2) of the developed algorithm for finding of the center of a minimum width annulus in the unweighted case does not depend on the number of edges in a network, because the problems can be solved in the order PLP-->MWAP. In the weighted case computational time is of order O(mn^2).

This paper provides a brief overview of two linear inverse problems concerned with the determination of the Earth’s interior: inverse gravimetry and normal mode tomography. Moreover, a vector spline method is proposed for a combined solution of both problems. This method uses localised basis functions, which are based on reproducing kernels, and is related to approaches which have been successfully applied to the inverse gravimetric problem and the seismic traveltime tomography separately.

The prototype of a rapid authoring tool for reusable learning objects, LOXtractor was extended with the ability for importing PDF files and for direct input of plain text. The ability to process PDF files was a major step forward to the goal of creating an application that integrates the creation of small-scale learning objects, their annotation with metadata and their mapping to an ontology for later retrieval into the task solving workflow, as intended by the SLEAM process. Especially small and medium sized enterprises can profit from this easy and affordable way to conserve individual informal learning effort for the whole company.

This dissertation deals with the optimization of the web formation in a spunbond process for the production of artificial fabrics. A mathematical model of the process is presented. Based on the model, two kind of attributes to be optimized are considered, those related with the quality of the fabric and those describing the stability of the production process. The problem falls in the multicriteria and decision making framework. The functions involved on the model of the process are non linear, non convex and non differentiable. A strategy in two steps; exploration and continuation, is proposed to approximate numerically the Pareto frontier and alternative methods are proposed to navigate the set and support the decision making process. The proposed strategy is applied to a particular production process and numerical results are presented.