### Refine

#### Year of publication

- 1999 (425)
- 1998 (116)
- 2000 (96)
- 2007 (92)
- 2018 (89)
- 1996 (88)
- 2015 (82)
- 1995 (81)
- 2016 (80)
- 2009 (78)
- 2014 (77)
- 1997 (76)
- 2019 (75)
- 1994 (70)
- 2005 (68)
- 2006 (67)
- 2008 (66)
- 2001 (64)
- 2003 (63)
- 2013 (62)
- 2012 (61)
- 2004 (57)
- 2010 (56)
- 2002 (54)
- 2011 (51)
- 2017 (51)
- 1993 (42)
- 1992 (40)
- 1991 (33)
- 2020 (14)
- 1990 (11)
- 1989 (5)
- 1987 (4)
- 1988 (4)
- 1979 (3)
- 1984 (3)
- 1985 (3)
- 1980 (1)
- 1981 (1)

#### Document Type

- Preprint (1034)
- Doctoral Thesis (637)
- Report (399)
- Article (215)
- Conference Proceeding (26)
- Diploma Thesis (22)
- Periodical Part (21)
- Working Paper (12)
- Master's Thesis (11)
- Lecture (7)

#### Language

- English (2409) (remove)

#### Keywords

- AG-RESY (47)
- PARO (25)
- SKALP (15)
- Visualisierung (13)
- Wavelet (13)
- Case-Based Reasoning (11)
- Inverses Problem (11)
- RODEO (11)
- finite element method (11)
- Mehrskalenanalyse (10)

#### Faculty / Organisational entity

- Fachbereich Mathematik (945)
- Fachbereich Informatik (658)
- Fachbereich Physik (250)
- Fraunhofer (ITWM) (203)
- Fachbereich Maschinenbau und Verfahrenstechnik (114)
- Fachbereich Elektrotechnik und Informationstechnik (82)
- Fachbereich Chemie (59)
- Fachbereich Biologie (43)
- Fachbereich Sozialwissenschaften (28)
- Fachbereich Wirtschaftswissenschaften (14)

Nowadays a large part of communication is taking place on social media platforms such as Twitter, Facebook, Instagram, or YouTube, where messages often include multimedia contents (e.g., images, GIFs or videos). Since such messages are in digital form, computers can in principle process them in order to make our lives more convenient and help us overcome arising issues. However, these goals require the ability to capture what these messages mean to us, that is, how we interpret them from our own subjective points of view. Thus, the main goal of this dissertation is to advance a machine's ability to interpret social media contents in a more natural, subjective way.
To this end, three research questions are addressed. The first question aims at answering "How to model human interpretation for machine learning?" We describe a way of modeling interpretation which allows for analyzing single or multiple ways of interpretation of both humans and computer models within the same theoretic framework. In a comprehensive survey we collect various possibilities for such a computational analysis. Particularly interesting are machine learning approaches where a single neural network learns multiple ways of interpretation. For example, a neural network can be trained to predict user-specific movie ratings from movie features and user ID, and can then be analyzed to understand how users rate movies. This is a promising direction, as neural networks are capable of learning complex patterns. However, how analysis results depend on network architecture is a largely unexplored topic. For the example of movie ratings, we show that the way of combining information for prediction can affect both prediction performance and what the network learns about the various ways of interpretation (corresponding to users).
Since some application-specific details for dealing with human interpretation only become visible when going deeper into particular use-cases, the other two research questions of this dissertation are concerned with two selected application domains: Subjective visual interpretation and gang violence prevention. The first application study deals with subjectivity that comes from personal attitudes and aims at answering "How can we predict subjective image interpretation one would expect from the general public on photo-sharing platforms such as Flickr?" The predictions in this case take the form of subjective concepts or phrases. Our study on gang violence prevention is more community-centered and considers the question "How can we automatically detect tweets of gang members which could potentially lead to violence?" There, the psychosocial codes aggression, loss and substance use serve as proxy to estimate the subjective implications of online messages.
In these two distinct application domains, we develop novel machine learning models for predicting subjective interpretations of images or tweets with images, respectively. In the process of building these detection tools, we also create three different datasets which we share with the research community. Furthermore, we see that some domains such as Chicago gangs require special care due to high vulnerability of involved users. This motivated us to establish and describe an in-depth collaboration between social work researchers and computer scientists. As machine learning is incorporating more and more subjective components and gaining societal impact, we have good reason to believe that similar collaborations between the humanities and computer science will become increasingly necessary to advance the field in an ethical way.

This work describes the development of a continuum phase field model that can describe static as well as dynamic wetting scenarios on the nano- and microscale.
The model reaches this goal by a direct integration of an equation of state as well as a direct integration of the dissipative properties of a specific fluid, which are both obtained from molecular simulations. The presented approach leads to good agreement between the predictions of the phase field model and the physical properties of the regarded fluid.
The implementation of the model employs a mixed finite element formulation, a newly developed semi-implicit time integration scheme, as well as the concept of hyper-dual numbers. This ensures a straightforward and robust exchangeability of the constitutive equation for the regarded fluid.
The presented simulations show good agreement between the results of the present phase field model and results from molecular dynamics simulations. Furthermore, the results show that the model enables the investigation of wetting scenarios on the microscale. The continuum phase field model of this work bridges the gap between the molecular models on the nanoscale and the phenomenologically motivated continuum models on the macroscale.

LinTim is a scientific software toolbox that has been under development since 2007, giving the possibility to solve the various planning steps in public transportation. Although the name originally derives from "Lineplanning and Timetabling", the available functions have grown far beyond this scope.
This document is the documentation for version 2020.02.
For more information, see https://www.lintim.net

In this thesis we study a variant of the quadrature problem for stochastic differential equations (SDEs), namely the approximation of expectations \(\mathrm{E}(f(X))\), where \(X = (X(t))_{t \in [0,1]}\) is the solution of an SDE and \(f \colon C([0,1],\mathbb{R}^r) \to \mathbb{R}\) is a functional, mapping each realization of \(X\) into the real numbers. The distinctive feature in this work is that we consider randomized (Monte Carlo) algorithms with random bits as their only source of randomness, whereas the algorithms commonly studied in the literature are allowed to sample from the uniform distribution on the unit interval, i.e., they do have access to random numbers from \([0,1]\).
By assumption, all further operations like, e.g., arithmetic operations, evaluations of elementary functions, and oracle calls to evaluate \(f\) are considered within the real number model of computation, i.e., they are carried out exactly.
In the following, we provide a detailed description of the quadrature problem, namely we are interested in the approximation of
\begin{align*}
S(f) = \mathrm{E}(f(X))
\end{align*}
for \(X\) being the \(r\)-dimensional solution of an autonomous SDE of the form
\begin{align*}
\mathrm{d}X(t) = a(X(t)) \, \mathrm{d}t + b(X(t)) \, \mathrm{d}W(t), \quad t \in [0,1],
\end{align*}
with deterministic initial value
\begin{align*}
X(0) = x_0 \in \mathbb{R}^r,
\end{align*}
and driven by a \(d\)-dimensional standard Brownian motion \(W\). Furthermore, the drift coefficient \(a \colon \mathbb{R}^r \to \mathbb{R}^r\) and the diffusion coefficient \(b \colon \mathbb{R}^r \to \mathbb{R}^{r \times d}\) are assumed to be globally Lipschitz continuous.
For the function classes
\begin{align*}
F_{\infty} = \bigl\{f \colon C([0,1],\mathbb{R}^r) \to \mathbb{R} \colon |f(x) - f(y)| \leq \|x-y\|_{\sup}\bigr\}
\end{align*}
and
\begin{align*}
F_p = \bigl\{f \colon C([0,1],\mathbb{R}^r) \to \mathbb{R} \colon |f(x) - f(y)| \leq \|x-y\|_{L_p}\bigr\}, \quad 1 \leq p < \infty.
\end{align*}
we have established the following.
\[\]
\(\textit{Theorem 1.}\)
There exists a random bit multilevel Monte Carlo (MLMC) algorithm \(M\) using
\[
L = L(\varepsilon,F) = \begin{cases}\lceil{\log_2(\varepsilon^{-2}}\rceil, &\text{if} \ F = F_p,\\
\lceil{\log_2(\varepsilon^{-2} + \log_2(\log_2(\varepsilon^{-1}))}\rceil, &\text{if} \ F = F_\infty
\end{cases}
\]
and replication numbers
\[
N_\ell = N_\ell(\varepsilon,F) = \begin{cases}
\lceil{(L+1) \cdot 2^{-\ell} \cdot \varepsilon^{-2}}\rceil, & \text{if} \ F = F_p,\\
\lceil{(L+1) \cdot 2^{-\ell} \cdot \max(\ell,1) \cdot \varepsilon^{-2}}\rceil, & \text{if} \ F=f_\infty
\end{cases}
\]
for \(\ell = 0,\ldots,L\), for which exists a positive constant \(c\) such that
\begin{align*}
\mathrm{error}(M,F) = \sup_{f \in F} \bigl(\mathrm{E}(S(f) - M(f))^2\bigr)^{1/2} \leq c \cdot \varepsilon
\end{align*}
and
\begin{align*}
\mathrm{cost}(M,F) = \sup_{f \in F} \mathrm{E}(\mathrm{cost}(M,f)) \leq c \cdot \varepsilon^{-2} \cdot \begin{cases}
(\ln(\varepsilon^{-1}))^2, &\text{if} \ F=F_p,\\
(\ln(\varepsilon^{-1}))^3, &\text{if} \ F=F_\infty
\end{cases}
\end{align*}
for every \(\varepsilon \in {]0,1/2[}\).
\[\]
Hence, in terms of the \(\varepsilon\)-complexity
\begin{align*}
\mathrm{comp}(\varepsilon,F) = \inf\bigl\{\mathrm{cost}(M,F) \colon M \ \text{is a random bit MC algorithm}, \mathrm{error}(M,F) \leq \varepsilon\bigr\}
\end{align*}
we have established the upper bound
\begin{align*}
\mathrm{comp}(\varepsilon,F) \leq c \cdot \varepsilon^{-2} \cdot \begin{cases}
(\ln(\varepsilon^{-1}))^2, &\text{if} \ F=F_p,\\
(\ln(\varepsilon^{-1}))^3, &\text{if} \ F=F_\infty
\end{cases}
\end{align*}
for some positive constant \(c\). That is, we have shown the same weak asymptotic upper bound as in the case of random numbers from \([0,1]\). Hence, in this sense, random bits are almost as powerful as random numbers for our computational problem.
Moreover, we present numerical results for a non-analyzed adaptive random bit MLMC Euler algorithm, in the particular cases of the Brownian motion, the geometric Brownian motion, the Ornstein-Uhlenbeck SDE and the Cox-Ingersoll-Ross SDE. We also provide a numerical comparison to the corresponding adaptive random number MLMC Euler method.
A key challenge in the analysis of the algorithm in Theorem 1 is the approximation of probability distributions by means of random bits. A problem very closely related to the quantization problem, i.e., the optimal approximation of a given probability measure (on a separable Hilbert space) by means of a probability measure with finite support size.
Though we have shown that the random bit approximation of the standard normal distribution is 'harder' than the corresponding quantization problem (lower weak rate of convergence), we have been able to establish the same weak rate of convergence as for the corresponding quantization problem in the case of the distribution of a Brownian bridge on \(L_2([0,1])\), the distribution of the solution of a scalar SDE on \(L_2([0,1])\), and the distribution of a centered Gaussian random element in a separable Hilbert space.

Activity recognition has continued to be a large field in computer science over the last two decades. Research questions from 15 years ago have led to solutions that today support our daily lives. Specifically, the success of smartphones or more recent developments of other smart devices (e.g., smart-watches) is rooted in applications that leverage on activity analysis and location tracking (fitness applications and maps). Today we can track our physical health and fitness and support our physical needs by merely owning (and using) a smart-phone. Still, the quality of our lives does not solely rely on fitness and physical health but also more increasingly on our mental well-being. Since we have learned how practical and easy it is to have a lot of functions, including health support on just one device, it would be specifically helpful if we could also use the smart-phone to support our mental and cognitive health if need be.
The ultimate goal of this work is to use sensor-assisted location and motion analysis to support various aspects of medically valid cognitive assessments.
In this regard, this thesis builds on Hypothesis 3: Sensors in our ubiquitous environment can collect information about our cognitive state, and it is possible to extract that information. In addition, these data can be used to derive complex cognitive states and to predict possible pathological changes in humans. After all, not only is it possible to determine the cognitive state through sensors but also to assist people in difficult situations through these sensors.
Thus, in the first part, this thesis focuses on the detection of mental state and state changes.
The primary purpose is to evaluate possible starting points for sensor systems in order to enable a clinically accurate assessment of mental states. These assessments must work on the condition that a developed system must be able to function within the given limits of a real clinical environment.
Despite the limitations and challenges of real-life deployments, it was possible to develop methods for determining the cognitive state and well-being of the residents. The analysis of the location data provides a correct classification of cognitive state with an average accuracy of 70% to 90%.
Methods to determine the state of bipolar patients provide an accuracy of 70-80\% for the detection of different cognitive states (total seven classes) using single sensors and 76% for merging data from different sensors. Methods for detecting the occurrence of state changes, a highlight of this work, even achieved a precision and recall of 95%.
The comparison of these results with currently used standard methods in psychiatric care even shows a clear advantage of the sensor-based method. The accuracy of the sensor-based analysis is 60% higher than the accuracy of the currently used methods.
The second part of this thesis introduces methods to support people’s actions in stressful situations on the one hand and analyzes the interaction between people during high-pressure activities on the other.
A simple, acceleration based, smartwatch instant feedback application was used to help laypeople to learn to perform CPR (cardiopulmonary resuscitation) in an emergency on the fly.
The evaluation of this application in a study with 43 laypersons showed an instant improvement in the CPR performance of 50%. An investigation of whether training with such an instant feedback device can support improved learning and lead to more permanent effects for gaining skills was able to confirm this theory.
Last but not least, with the main interest shifting from the individual to a group of people at the end of this work, the question: how can we determine the interaction between individuals within a group of people? was answered by developing a methodology to detect un-voiced collaboration in random ad-hoc groups. An evaluation with data retrieved from video footage provides an accuracy of up to more than 95%, and even with artificially introduced errors rates of 20%, still an accuracy of 70% precision, and 90% recall can be achieved.
All scenarios in this thesis address different practical issues of today’s health care. The methods developed are based on real-life datasets and real-world studies.

Biological clocks exist across all life forms and serve to coordinate organismal physiology with periodic environmental changes. The underlying mechanism of these clocks is predominantly based on cellular transcription-translation feedback loops in which clock proteins mediate the periodic expression of numerous genes. However, recent studies point to the existence of a conserved timekeeping mechanism independent of cellular transcription and translation, but based on cellular metabolism. These metabolic clocks were concluded based upon the observation of circadian and ultradian oscillations in the level of hyperoxidized peroxiredoxin proteins. Peroxiredoxins are enzymes found almost ubiquitously throughout life. Originally identified as H2O2 scavengers, recent studies show that peroxiredoxins can transfer oxidation to, and thereby regulate, a wide range of cellular proteins. Thus, it is conceivable that peroxiredoxins, using H2O2 as the primary signaling molecule, have the potential to integrate and coordinate much of cellular physiology and behavior with metabolic changes. Nonetheless, it remained unclear if peroxiredoxins are passive reporters of metabolic clock activity or active determinants of cellular timekeeping. Budding yeast possess an ultradian metabolic clock termed the Yeast Metabolic Cycle (YMC). The most obvious feature of the YMC is a high amplitude oscillation in oxygen consumption. Like circadian clocks, the YMC temporally compartmentalizes cellular processes (e.g. metabolism) and coordinates cellular programs such as gene expression and cell division. The YMC also exhibits oscillations in the level of hyperoxidized peroxiredoxin proteins.
In this study, I used the YMC clock model to investigate the role of peroxiredoxins in cellular timekeeping, as well as the coordination of cell division with the metabolic clock. I observed that cytosolic 2-Cys peroxiredoxins are essential for robust metabolic clock function. I provide direct evidence for oscillations in cytosolic H2O2 levels, as well as cyclical changes in oxidation state of a peroxiredoxin and a model peroxiredoxin target protein during the YMC. I noted two distinct metabolic states during the YMC: low oxygen consumption (LOC) and high oxygen consumption (HOC). I demonstrate that thiol-disulfide oxidation and reduction are necessary for switching between LOC and HOC. Specifically, a thiol reductant promotes switching to HOC, whilst a thiol oxidant prevents switching to HOC, forcing cells to remain in LOC. Transient peroxiredoxin inactivation triggered rapid and premature switching from LOC to HOC. Furthermore, I show that cell division is normally synchronized with the YMC and that deletion of typical 2-Cys peroxiredoxins leads to complete uncoupling of cell division from metabolic cycling. Moreover, metabolic oscillations are crucial for regulating cell cycle entry and exit. Intriguingly, switching to HOC is crucial for initiating cell cycle entry whilst switching to LOC is crucial for cell cycle completion and exit. Consequently, forcing cells to remain in HOC by application of a thiol reductant leads to multiple rounds of cell cycle entry despite failure to complete the preceding cell cycle. On the other hand, forcing cells to remain in LOC by treating with a thiol oxidant prevents initiation of cell cycle entry.
In conclusion, I propose that peroxiredoxins – by controlling metabolic cycles, which are in turn crucial for regulating the progression through cell cycle – play a central role in the coordination of cellular metabolism with cell division. This proposition, thus, positions peroxiredoxins as active players in the cellular timekeeping mechanism.

Problems, Chances and Limitations of Facilitating Self-Directed Learning at a German Gymnasium
(2020)

Self-directed learning is becoming more important than ever. In a rapidly changing world, learners must be ready to face new obstacles. Self-directed learning gives the learners the chance to adapt to these social contextual changes. But facilitating self-directed learning in formal settings seems to be a risky task and venture. To accomplish its facilitation, many limits must be overcome.
In this thesis, lessons at a German school called a Gymnasium – the type of school where learners can get the highest school level degree – were observed in order to find out in how far elements of self-directed learning can be found in the observed lessons. For the comparison, the process elements of Knowles’ book “Self-Directed Learning: A Guide for Learners and Teachers” from 1975 were adapted to the observations of the lessons.
A central part of the observations and interviews of the teachers was to find out which limitations in the facilitation of self-directed learning can be found in terms of the institutional framework and the attitude of the teachers. The results of the observations highly differentiated. Whereas in many of the observed scientific lessons, many elements of self-directed learning were found, the lessons in social studies were teacher-directed. Also, a different attitude between the teachers was found in terms of the support for self-directed learning.
Importantly, the thesis includes the scientific critic of self-directed learning instead of excluding it and proposes the facilitation of Grow’s “Self-Directed-Learning Model” (1991) where the level of the learner’s self-directed learning is supposed to progress during school. This thesis is relevant for educators, curriculum developers, teachers and policymakers to help them identify the difficulties and chances to facilitate SDL in formal settings.

Diversification is one of the main pillars of investment strategies. The prominent 1/N portfolio, which puts equal weight on each asset is, apart from its simplicity, a method which is hard to outperform in realistic settings, as many studies have shown. However, depending on the number of considered assets, this method can lead to very large portfolios. On the other hand, optimization methods like the mean-variance portfolio suffer from estimation errors, which often destroy the theoretical benefits. We investigate the performance of the equal weight portfolio when using fewer assets. For this we explore different naive portfolios, from selecting the best Sharpe ratio assets to exploiting knowledge about correlation structures using clustering methods. The clustering techniques separate the possible assets into non-overlapping clusters and the assets within a cluster are ordered by their Sharpe ratio. Then the best asset of each portfolio is chosen to be a member of the new portfolio with equal weights, the cluster portfolio. We show that this portfolio inherits the advantages of the 1/N portfolio and can even outperform it empirically. For this we use real data and several simulation models. We prove these findings from a statistical point of view using the framework by DeMiguel, Garlappi and Uppal (2009). Moreover, we show the superiority regarding the Sharpe ratio in a setting, where in each cluster the assets are comonotonic. In addition, we recommend the consideration of a diversification-risk ratio to evaluate the performance of different portfolios.

In an overall effort to contribute to the steadily expanding EO literature, this cumulative dissertation aims to help the literature to advance with greater clarity, comprehensive modeling, and more robust research designs. To achieve this, the first paper of this dissertation focuses on the consistency and coherence in variable choices and modeling considerations by conducting a systematic quantitative review of the EO-performance literature. Drawing on the plethora of previous EO studies, the second paper employs a comprehensive meta-analytic structural equation modeling approach (MASEM) to explore the potential for unique component-level relationships among EO’s three core dimensions in antecedent to outcome relationships. The third paper draws on these component-level insights and performs a finer-grained replication of the seminal MASEM of Rosenbusch, Rauch, and Bausch (2013) that proposes EO as a full mediator between the task environment and firm performance. The fourth and final paper of this cumulative dissertation illustrates exigent endogeneity concerns inherent in observational EO-performance research and provides guidance on how researchers can move towards establishing causal relationships.

Spin-crossover and valence tautomeric complexes are of tremendous interest in the field of molecular electronics, electronic storage devices and information processing. Herein, synthesis and characterization of the spin-crossover and valence tautomeric cobalt dioxolene complexes are reported. All the synthesized complexes contain N,N'-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane (L-N4tBu2) as ancillary ligands. Only various types of co-ligands which are different dioxolene ligands, have been used. The mononuclear cobalt dioxolene complexes have been synthesized by using dideprotonated form of the dioxolene ligand 4,5-dichlorocatechol (H2DCCat) as co-ligands, and the cobalt bis(dioxolene) complexes have been synthesized by using dideprotonated form of the 3,3'-dihydroxy-diphenoquinone-(4,4') (H2(SQ-SQ)) as co-ligands.
Analytically pure samples of the complexes [Co(L-N4tBu2)(DCCat)] (1), [Co(L-N4tBu2)(DCCat)](BPh4) (2b), [Co2(L-N4tBu2)2(SQ-SQ)](BPh4)2.4 DMF (3b), [Co2(L-N4tBu2)2(Cat-SQ)](BF4)2.Et2O (3d), have been synthesized and characterized by X-ray crystallography, magnetic and electrochemical measurements. The complexes have been investigated by UV/Vis/NIR-, IR-, and NMR spectroscopic measurements.
The complex [Co(L-N4tBu2)(DCCat)] (1) shows temperature invariant high-spin cobalt(II) catecholate state. One-electron oxidation of 1 has yielded the complex [Co(L-N4tBu2)(DCCat)](BPh4) (2b). The solid state properties of 2b are best described by the low-spin cobalt(III) catecholate state, but the solution state properties of the complex 2b are best described by the valence tautomeric transition from the low-spin cobalt(III) catecholate to the low-spin cobalt(II) semiquinonate state.
For the cobalt bis(dioxolene) complexes, it is found that spin-crossover for the two cobalt(II) centers is accompanied by the electronic state changes of the coordinated bis(dioxolene) unit from singlet open-shell biradicaloid to singlet closed-shell quinonoid form in complex 3b. Approaching similar synthetic method to 3b, but performing the metathesis reaction with sodium tetrafluoroborate rather than sodium tetraphenylborate has resulted in the formation of the complex [Co2(L-N4tBu2)2(Cat-SQ)](BF4)2.Et2O (3d). The solid state properties of the complex are best described by the temperature induced valence tautomeric transition for the low-spin cobalt(III) center which is accompanied by the spin-crossover process for the cobalt(II) center. Thus, the electronic state of the complex 3d changes from LS-CoIII-Cat-SQ-CoII-LS to HS-CoII-(SQ-SQ)CS-CoII-HS state upon change in temperature.
Temperature-induced electronic configuration changes of the (SQ-SQ)CS2- ligands from open-shell biradicaloid to closed-shell quinonoid configurations are not observed for the nickel-, copper- and zinc bis(dioxolene) complexes 4a, 5a and 6b, respectively. For these complexes, the metal ions are bridged by (SQ-SQ)CS2- ligand and the paramagnetic metal ions are very weakly antiferromagnetically coupled.