### Refine

#### Year of publication

- 1992 (40) (remove)

#### Language

- English (40) (remove)

#### Keywords

- AG-RESY (1)
- CODET (1)
- PARO (1)
- SKALP (1)
- mathematical modeling (1)
- nonlinear diffusion (1)
- operator splitting (1)

#### Faculty / Organisational entity

On the Mróz Model
(1992)

User interfaces for large distributed applications have to handle specific problems: the complexity of the application itself and the integration of online-data into the user interface. A main task of the user interface architecture is to provide powerful tools to design and augment the end-user system easily, hence giving the designer more time to focus on user requirements. Our experiences developing a user interface system for a process control room showed that a lot of time during the development process is wasted for the integration of online-data residing anywhere but not in the user interface itself. Furtheron external data may be kept by different kinds of programs, e.g. C-programs running
a numerical process model or PROLOG-programs running a diagnosis system, both in parallel to the process and in parallel to the user interface. Facing these specific requirements, we developed a user interface architecture following two main goals: 1. integration of external information into high-level graphical objects and 2. the system should be open for any program running as a separate process using its own problem-oriented language. The architecture is based on two approaches: an asynchronous, distributed and language independent communication model and an object model describing the problem domain and the interface using object-oriented techniques. Other areas like rule-based programming are involved, too. With this paper, we will present the XAVIA user interface architecture, the (as far as we know) first user inteface architecture, which is consequently based on a distributed object model.

Gauss Frame Offsets
(1992)

Weighted k-cardinality trees
(1992)

We consider the k -CARD TREE problem, i.e., the problem of finding in a given undirected graph G a subtree with k edges, having minimum weight. Applications of this problem arise in oil-field leasing and facility layout. While the general problem is shown to be strongly NP hard, it can be solved in polynomial time if G is itself a tree. We give an integer programming formulation of k-CARD TREE, and an efficient exact separation routine for a set of generalized subtour elimination constraints. The polyhedral structure of the convex huLl of the integer solutions is studied.

The polynomial approach introduced in Fuhrmann [1991] is extended to cover the crucial area of AAK theory, namely the characterization of zero location of the Schmidt vectors of the Hankel operators. This is done using the duality theory developed in that paper but with a twist. First we get the standard, lower bound, estimates on the number of unstable zeroes of the minimal degree Schmidt vectors of the Hankel operator. In the case of the Schmidt vector corresponding to the smallest singular the lower bound is in fact achieved. This leads to a solution of a Bezout equation. We use this Bezout equation to introduce another Hankel operator which have singular values that are the inverse of the singular values of the original Hankel operator.