### Refine

#### Year of publication

#### Document Type

- Preprint (37)
- Report (1)
- Working Paper (1)

#### Language

- English (39) (remove)

#### Keywords

- Decomposition and Reconstruction Schemes (2)
- Kugel (2)
- Kugelflächenfunktion (2)
- Mehrskalenanalyse (2)
- Spherical Wavelets (2)
- Sphäre (2)
- Up Functions (2)
- Wavelet (2)
- Wavelet-Analyse (2)
- uniqueness (2)

The Earth's surface is an almost perfect sphere. Deviations from its spherical shape are less than 0,4% of its radius and essentially arise from its rotation. All equipotential surfaces are nearly spherical, too. In consequence, multiscale modelling of geoscientifically relevant data on the sphere involving rotational symmetry of the trial functions used for the approximation plays an important role. In this paper we deal with isotropic kernel functions showing local support and (one-dimensional) polynomial structure (briefly called isotropic finite elements) for reconstructing square--integrable functions on the sphere. Essential tool is the concept of multiresolution analysis by virtue of the spherical up function. The main result is a tree algorithm in terms of (low--order) isotropic finite elements.

Wavelet transform originated in 1980's for the analysis of seismic signals has seen an explosion of applications in geophysics. However, almost all of the material is based on wavelets over Euclidean spaces. This paper deals with the generalization of the theory and algorithmic aspects of wavelets to a spherical earth's model and geophysically relevant vector fields such as the gravitational, magnetic, elastic field of the earth.A scale discrete wavelet approach is considered on the sphere thereby avoiding any type of tensor-valued 'basis (kernel) function'. The generators of the vector wavelets used for the fast evaluation are assumed to have compact supports. Thus the scale and detail spaces are finite-dimensional. As an important consequence, detail information of the vector field under consideration can be obtained only by a finite number of wavelet coefficients for each scale. Using integration formulas that are exact up to a prescribed polynomial degree, wavelet decomposition and reconstruction are investigated for bandlimited vector fields. A pyramid scheme for the recursive computation of the wavelet coefficients from level to level is described in detail. Finally, data compression is discussed for the EGM96 model of the earth's gravitational field.

A multiscale method is introduced using spherical (vector) wavelets for the computation of the earth's magnetic field within source regions of ionospheric and magnetospheric currents. The considerations are essentially based on two geomathematical keystones, namely (i) the Mie representation of solenoidal vector fields in terms of toroidal and poloidal parts and (ii) the Helmholtz decomposition of spherical (tangential) vector fields. Vector wavelets are shown to provide adequate tools for multiscale geomagnetic modelling in form of a multiresolution analysis, thereby completely circumventing the numerical obstacles caused by vector spherical harmonics. The applicability and efficiency of the multiresolution technique is tested with real satellite data.

This paper deals with the problem of determining the sea surface topography from geostrophic flow of ocean currents on local domains of the spherical Earth. In mathematical context the problem amounts to the solution of a spherical differential equation relating the surface curl gradient of a scalar field (sea surface topography) to a surface divergence-free vector field(geostrophic ocean flow). At first, a continuous solution theory is presented in the framework of an integral formula involving Green’s function of the spherical Beltrami operator. Different criteria derived from spherical vector analysis are given to investigate uniqueness. Second, for practical applications Green’s function is replaced by a regularized counterpart. The solution is obtained by a convolution of the flow field with a scaled version of the regularized Green function. Calculating locally without boundary correction would lead to errors near the boundary. To avoid these Gibbs phenomenona we additionally consider the boundary integral of the corresponding region on the sphere which occurs in the integral formula of the solution. For reasons of simplicity we discuss a spherical cap first, that means we consider a continuously differentiable (regular) boundary curve. In a second step we concentrate on a more complicated domain with a non continuously differentiable boundary curve, namely a rectangular region. It will turn out that the boundary integral provides a major part for stabilizing and reconstructing the approximation of the solution in our multiscale procedure.

This work is concerned with a nonlinear Galerkin method for solving the incompressible Navier-Stokes equation on the sphere. It extends the work of Debussche, Marion,Shen, Temam et al. from one-dimensional or toroidal domains to the spherical geometry. In the first part, the method based on type 3 vector spherical harmonics is introduced and convergence is indicated. Further it is shown that the occurring coupling terms involving three vector spherical harmonics can be expressed algebraically in terms of Wigner-3j coefficients. To improve the numerical efficiency and economy we introduce an FFT based pseudo spectral algorithm for computing the Fourier coefficients of the nonlinear advection term. The resulting method scales with O(N^3), if N denotes the maximal spherical harmonic degree. The latter is demonstrated in an extensive numerical example.

In this work we introduce a new bandlimited spherical wavelet: The Bernstein wavelet. It possesses a couple of interesting properties. To be specific, we are able to construct bandlimited wavelets free of oscillations. The scaling function of this wavelet is investigated with regard to the spherical uncertainty principle, i.e., its localization in the space domain as well as in the momentum domain is calculated and compared to the well-known Shannon scaling function. Surprisingly, they possess the same localization in space although one is highly oscillating whereas the other one shows no oscillatory behavior. Moreover, the Bernstein scaling function turns out to be the first bandlimited scaling function known to the literature whose uncertainty product tends to the minimal value 1.

This work is dedicated to the wavelet modelling of regional and temporal variations of the Earth's gravitational potential observed by GRACE. In the first part, all required mathematical tools and methods involving spherical wavelets are introduced. Then we apply our method to monthly GRACE gravity fields. A strong seasonal signal can be identified, which is restricted to areas, where large-scale redistributions of continental water mass are expected. This assumption is analyzed and verified by comparing the time series of regionally obtained wavelet coefficients of the gravitational signal originated from hydrology models and the gravitational potential observed by GRACE. The results are in good agreement to previous studies and illustrate that wavelets are an appropriate tool to investigate regional time-variable effects in the gravitational field.

A concept of generalized discrepancy, which involves pseudodifferential operators to give a criterion of equidistributed pointsets, is developed on the sphere. A simply structured formula in terms of elementary functions is established for the computation of the generalized discrepancy. With the help of this formula five kinds of point systems on the sphere, namely lattices in polar coordinates, transformed 2-dimensional sequences, rotations on the sphere, triangulation, and sum of three squares sequence, are investigated. Quantitative tests are done, and the results are compared with each other. Our calculations exhibit different orders of convergence of the generalized discrepancy for different types of point systems.

As a first approximation the Earth is a sphere; as a second approximation it may be considered an ellipsoid of revolution. The deviations of the actual Earth's gravity field from the ellipsoidal 'normal' field are so small that they can be understood to be linear. The splitting of the Earth's gravity field into a 'normal' and a remaining small 'disturbing' field considerably simplifies the problem of its determination. Under the assumption of an ellipsoidal Earth model high observational accuracy is achievable only if the deviation (deflection of the vertical) of the physical plumb line, to which measurements refer, from the ellipsoidal normal is not ignored. Hence, the determination of the disturbing potential from known deflections of the vertical is a central problem of physical geodesy. In this paper we propose a new, well-promising method for modelling the disturbing potential locally from the deflections of the vertical. Essential tools are integral formulae on the sphere based on Green's function of the Beltrami operator. The determination of the disturbing potential from deflections of the vertical is formulated as a multiscale procedure involving scale-dependent regularized versions of the surface gradient of the Green function. The modelling process is based on a multiscale framework by use of locally supported surface curl-free vector wavelets.

Spline functions that interpolate data given on the sphere are developed in a weighted Sobolev space setting. The flexibility of the weights makes possible the choice of the approximating function in a way which emphasizes attributes desirable for the particular application area. Examples show that certain choices of the weight sequences yield known methods. A pointwise convergence theorem containing explicit constants yields a useable error bound.