### Refine

#### Year of publication

- 2012 (61) (remove)

#### Document Type

- Doctoral Thesis (33)
- Report (12)
- Preprint (7)
- Article (4)
- Master's Thesis (2)
- Conference Proceeding (1)
- Periodical Part (1)
- Working Paper (1)

#### Language

- English (61) (remove)

#### Keywords

- Transaction Costs (2)
- Arithmetic data-path (1)
- Bildverarbeitung (1)
- Bioinformatik (1)
- Carbon footprint (1)
- Chlamydomonas reinhardii (1)
- Cloud Computing (1)
- Cohen-Lenstra heuristic (1)
- Computeralgebra (1)
- Consistent Price Processes (1)

#### Faculty / Organisational entity

In urban planning, both measuring and communicating sustainability are among the most recent concerns. Therefore, the primary emphasis of this thesis concerns establishing metrics and visualization techniques in order to deal with indicators of sustainability.
First, this thesis provides a novel approach for measuring and monitoring two indicators of sustainability - urban sprawl and carbon footprints – at the urban neighborhood scale. By designating different sectors of relevant carbon emissions as well as different household categories, this thesis provides detailed information about carbon emissions in order to estimate impacts of daily consumption decisions and travel behavior by household type. Regarding urban sprawl, a novel gridcell-based indicator model is established, based on different dimensions of urban sprawl.
Second, this thesis presents a three-step-based visualization method, addressing predefined requirements for geovisualizations and visualizing those indicator results, introduced above. This surface-visualization combines advantages from both common GIS representation and three-dimensional representation techniques within the field of urban planning, and is assisted by a web-based graphical user interface which allows for accessing the results by the public.
In addition, by focusing on local neighborhoods, this thesis provides an alternative approach in measuring and visualizing both indicators by utilizing a Neighborhood Relation Diagram (NRD), based on weighted Voronoi diagrams. Thus, the user is able to a) utilize original census data, b) compare direct impacts of indicator results on the neighboring cells, and c) compare both indicators of sustainability visually.

Recently convex optimization models were successfully applied for solving various problems in image analysis and restoration. In this paper, we are interested in relations between convex constrained optimization problems of the form \(min\{\Phi(x)\) subject to \(\Psi(x)\le\tau\}\) and their non-constrained, penalized counterparts \(min\{\Phi(x)+\lambda\Psi(x)\}\). We start with general considerations of the topic and provide a novel proof which ensures that a solution of the constrained problem with given \(\tau\) is also a solution of the on-constrained problem for a certain \(\lambda\). Then we deal with the special setting that \(\Psi\) is a semi-norm and \(\Phi=\phi(Hx)\), where \(H\) is a linear, not necessarily invertible operator and \(\phi\) is essentially smooth and strictly convex. In this case we can prove via the dual problems that there exists a bijective function which maps \(\tau\) from a certain interval to \(\lambda\) such that the solutions of the constrained problem coincide with those of the non-constrained problem if and only if \(\tau\) and \(\lambda\) are in the graph of this function. We illustrate the relation between \(\tau\) and \(\lambda\) by various problems arising in image processing. In particular, we demonstrate the performance of the constrained model in restoration tasks of images corrupted by Poisson noise and in inpainting models with constrained nuclear norm. Such models can be useful if we have a priori knowledge on the image rather than on the noise level.

The increasing complexity of modern SoC designs makes tasks of SoC formal verification
a lot more complex and challenging. This motivates the research community to develop
more robust approaches that enable efficient formal verification for such designs.
It is a common scenario to apply a correctness by integration strategy while a SoC
design is being verified. This strategy assumes formal verification to be implemented in
two major steps. First of all, each module of a SoC is considered and verified separately
from the other blocks of the system. At the second step – when the functional correctness
is successfully proved for every individual module – the communicational behavior has
to be verified between all the modules of the SoC. In industrial applications, SAT/SMT-based interval property checking(IPC) has become widely adopted for SoC verification. Using IPC approaches, a verification engineer is able to afford solving a wide range of important verification problems and proving functional correctness of diverse complex components in a modern SoC design. However, there exist critical parts of a design where formal methods often lack their robustness. State-of-the-art property checkers fail in proving correctness for a data path of an industrial central processing unit (CPU). In particular, arithmetic circuits of a realistic size (32 bits or 64 bits) – especially implementing multiplication algorithms – are well-known examples when SAT/SMT-based
formal verification may reach its capacity very fast. In cases like this, formal verification
is replaced with simulation-based approaches in practice. Simulation is a good methodology that may assure a high rate of discovered bugs hidden in a SoC design. However, in contrast to formal methods, a simulation-based technique cannot guarantee the absence of errors in a design. Thus, simulation may still miss some so-called corner-case bugs in the design. This may potentially lead to additional and very expensive costs in terms of time, effort, and investments spent for redesigns, refabrications, and reshipments of new chips.
The work of this thesis concentrates on studying and developing robust algorithms
for solving hard arithmetic decision problems. Such decision problems often originate from a task of RTL property checking for data-path designs. Proving properties of those
designs can efficiently be performed by solving SMT decision problems formulated with
the quantifier-free logic over fixed-sized bit vectors (QF-BV).
This thesis, firstly, proposes an effective algebraic approach based on a Gröbner basis theory that allows to efficiently decide arithmetic problems. Secondly, for the case of custom-designed components, this thesis describes a sophisticated modeling technique which is required to restore all the necessary arithmetic description from these components. Further, this thesis, also, explains how methods from computer algebra and the modeling techniques can be integrated into a common SMT solver. Finally, a new QF-BV SMT solver is introduced.

Today, polygonal models occur everywhere in graphical applications, since they are easy
to render and to compute and a very huge set of tools are existing for generation and
manipulation of polygonal data. But modern scanning devices that allow a high quality
and large scale acquisition of complex real world models often deliver a large set of
points as resulting data structure of the scanned surface. A direct triangulation of those
point clouds does not always result in good models. They often contain problems like
holes, self-intersections and non manifold structures. Also one often looses important
surface structures like sharp corners and edges during a usual surface reconstruction.
So it is suitable to stay a little longer in the point based world to analyze the point cloud
data with respect to such features and apply a surface reconstruction method afterwards
that is known to construct continuous and smooth surfaces and extend it to reconstruct
sharp features.

Annual Report 2011
(2012)

Annual Report, Jahrbuch AG Magnetismus

The development of autonomous vehicle systems demands the increased usage of software based control mechanisms. Generally, this leads to very complex systems, whose proper functioning has to be ensured. In our work we aim at investigating and assessing the potential effects of software issues on the safety, reliability and availability of complex embedded autonomous systems. One of the key aspects of the research concerns the mapping of functional descriptions in form of integrated behavior-based control networks to State-Event Fault Tree models.

An isogeometric Reissner-Mindlin shell derived from the continuum theory is presented. The geometry is described by NURBS surfaces. The kinematic description of the employed shell theory requires the interpolation of the director vector and of a local basis system. Hence, the definition of nodal basis systems at the control points is necessary for the proposed formulation. The control points are in general not located on the shell reference surface and thus, several choices for the nodal values are possible. The proposed new method uses the higher continuity of the geometrical description to calculate nodal basis system and director vectors which lead to geometrical exact interpolated values thereof. Thus, the initial director vector coincides with the normal vector even for the coarsest mesh. In addition to that a more accurate interpolation of the current director and its variation is proposed. Instead of the interpolation of nodal director vectors the new approach interpolates nodal rotations. Account is taken for the discrepancy between interpolated basis systems and the individual nodal basis systems with an additional transformation. The exact evaluation of the initial director vector along with the interpolation of the nodal rotations lead to a shell formulation which yields precise results even for coarse meshes. The convergence behavior is shown to be correct for k-refinement allowing the use of coarse meshes with high orders of NURBS basis functions. This is potentially advantageous for applications with high numerical effort per integration point. The geometrically nonlinear formulation accounts for large rotations. The consistent tangent matrix is derived. Various standard benchmark examples show the superior accuracy of the presented shell formulation. A new benchmark designed to test the convergence behavior for free form surfaces is presented. Despite the higher numerical effort per integration point the improved accuracy yields considerable savings in computation cost for a predefined error bound.

Capital budgeting or investment decisions have an essential influence on companies’ performance. Instead of a rational choice, capital budgeting might be regarded as a process of reality construction. Research suggests that decision makers have only limited control over their own cognitive biases in this construction process. It is in this perspective that this paper intends to answer the following research question: What are behavioral determinants for a successful capital-budgeting decision process? The authors identify and discuss three behavioral success factors (reflective prudence, critical communication and outcome independence) for five stages of the capital budgeting process against the backdrop of the findings of the managerial and organizational cognition theory and cognitive psychology.

We consider a variant of the generalized assignment problem (GAP) where the amount of space used in each bin is restricted to be either zero (if the bin is not opened) or above a given lower bound (a minimum quantity). We provide several complexity results for different versions of the problem and give polynomial time exact algorithms and approximation algorithms for restricted cases.
For the most general version of the problem, we show that it does not admit a polynomial time approximation algorithm (unless P=NP), even for the case of a single bin. This motivates to study dual approximation algorithms that compute solutions violating the bin capacities and minimum quantities by a constant factor. When the number of bins is fixed and the minimum quantity of each bin is at least a factor \(\delta>1\) larger than the largest size of an item in the bin, we show how to obtain a polynomial time dual approximation algorithm that computes a solution violating the minimum quantities and bin capacities by at most a factor \(1-\frac{1}{\delta}\) and \(1+\frac{1}{\delta}\), respectively, and whose profit is at least as large as the profit of the best solution that satisfies the minimum quantities and bin capacities strictly.
In particular, for \(\delta=2\), we obtain a polynomial time (1,2)-approximation algorithm.

Filtering, Approximation and Portfolio Optimization for Shot-Noise Models and the Heston Model
(2012)

We consider a continuous time market model in which stock returns satisfy a stochastic differential equation with stochastic drift, e.g. following an Ornstein-Uhlenbeck process. The driving noise of the stock returns consists not only of Brownian motion but also of a jump part (shot noise or compound Poisson process). The investor's objective is to maximize expected utility of terminal wealth under partial information which means that the investor only observes stock prices but does not observe the drift process. Since the drift of the stock prices is unobservable, it has to be estimated using filtering techniques. E.g., if the drift follows an Ornstein-Uhlenbeck process and without
jump part, Kalman filtering can be applied and optimal strategies can be computed explicitly. Also in other cases, like for an underlying
Markov chain, finite-dimensional filters exist. But for certain jump processes (e.g. shot noise) or certain nonlinear drift dynamics explicit computations, based on discrete observations, are no longer possible or existence of finite dimensional filters is no longer valid. The same
computational difficulties apply to the optimal strategy since it depends on the filter. In this case the model may be approximated by
a model where the filter is known and can be computed. E.g., we use statistical linearization for non-linear drift processes, finite-state-Markov chain approximations for the drift process and/or diffusion approximations for small jumps in the noise term.
In the approximating models, filters and optimal strategies can often be computed explicitly. We analyze and compare different approximation methods, in particular in view of performance of the corresponding utility maximizing strategies.