### Refine

#### Year of publication

- 1995 (81) (remove)

#### Document Type

- Preprint (50)
- Report (17)
- Article (12)
- Doctoral Thesis (1)
- Working Paper (1)

#### Language

- English (81) (remove)

#### Keywords

- Boltzmann Equation (3)
- Numerical Simulation (3)
- Case Based Reasoning (2)
- Hysteresis (2)
- Boundary Value Problems (1)
- CAQ (1)
- Case-Based Reasoning (1)
- Case-Based Reasoning Systems (1)
- Energiespektrum (1)
- Energy spectra (1)

#### Faculty / Organisational entity

- Fachbereich Mathematik (40)
- Fachbereich Informatik (31)
- Fachbereich Physik (10)

2D quantum dilaton gravitational Hamiltonian, boundary terms and new definition for total energy
(1995)

The ADM and Bondi mass for the RST model have been first discussed from Hawking and Horowitz's argument. Since there is a nonlocal term in the RST model, the RST lagrangian has to be localized so that Hawking and Horowitz's proposal can be carried out. Expressing the localized RST action in terms of the ADM formulation, the RST Hamiltonian can be derived, meanwhile keeping track of all boundary terms. Then the total boundary terms can be taken as the total energy for the RST model. Our result shows that the previous expression for the ADM and Bondi mass actually needs to be modified at quantum level, but at classical level, our mass formula can be reduced to that given by Bilal and Kogan [5] and de Alwis [6]. It has been found that there is a new contribution to the ADM and Bondi mass from the RST boundary due to the existence of the hidden dynamical field. The ADM and Bondi mass with and without the RST boundary for the static and dynamical solutions have been discussed respectively in detail, and some new properties have been found. The thunderpop of the RST model has also been encountered in our new Bondi mass formula.

Experience gathered from applying the software process modeling language MVP-L in software development organizations has shown the need for graphical representations of process models. Project members (i.e„ non MVP-L specialists) review models much more easily by using graphical representations. Although several various graphical notations were developed for individual projects in which MVP-L was applied, there was previously no consistent definition of a mapping between textual MVP-L models and graphical representations. This report defines a graphical representation schema for MVP-L
descriptions and combines previous results in a unified form. A basic set of building blocks (i.e., graphical symbols and text fragments) is defined, but because we must first gain experience with the new symbols, only rudimentary guidelines are given for composing basic
symbols into a graphical representation of a model.

A way to derive consistently kinetic models for vehicular traffic from microscopic follow the leader models is presented. The obtained class of kinetic equations is investigated. Explicit examples for kinetic models are developed with a particular emphasis on obtaining models, that give realistic results. For space homogeneous traffic flow situations numerical examples are given including stationary distributions and fundamental diagrams.

Cloudy inhomogenities in artificial fabrics are graded by a fast method which is based on a Laplacian pyramid decomposition of the fabric image. This band-pass representation takes into account the scale character of the cloudiness. A quality measure of the entire cloudiness is obtained as a weighted mean over the variances of all scales.

The well-known and powerful proof principle by well-founded induction says that for verifying \(\forall x : P (x)\) for some property \(P\) it suffices to show \(\forall x : [[\forall y < x :P (y)] \Rightarrow P (x)] \) , provided \(<\) is a well-founded partial ordering on the domainof interest. Here we investigate a more general formulation of this proof principlewhich allows for a kind of parameterized partial orderings \(<_x\) which naturallyarises in some cases. More precisely, we develop conditions under which theparameterized proof principle \(\forall x : [[\forall y <_x x : P (y)] \Rightarrow P (x)]\) is sound in thesense that \(\forall x : [[\forall y <_x x : P (y)] \Rightarrow P (x)] \Rightarrow \forall x : P (x)\) holds, and givecounterexamples demonstrating that these conditions are indeed essential.

Spline functions that approximate data given on the sphere are developed in a weighted Sobolev space setting. The flexibility of the weights makes possible the choice of the approximating function in a way which emphasizes attributes desirable for the particular application area. Examples show that certain choices of the weight sequences yield known methods. A convergence theorem containing explicit constants yields a usable error bound. Our survey ends with the discussion of spherical splines in geodetically relevant pseudodifferential equations.

Some new approximation methods are described for harmonic functions corresponding to boundary values on the (unit) sphere. Starting from the usual Fourier (orthogonal) series approach, we propose here nonorthogonal expansions, i.e. series expansions in terms of overcomplete systems consisting of localizing functions. In detail, we are concerned with the so-called Gabor, Toeplitz, and wavelet expansions. Essential tools are modulations, rotations, and dilations of a mother wavelet. The Abel-Poisson kernel turns out to be the appropriate mother wavelet in approximation of harmonic functions from potential values on a spherical boundary.

Let \(a_1,\dots,a_m\) be i.i .d. vectors uniform on the unit sphere in \(\mathbb{R}^n\), \(m\ge n\ge3\) and let \(X\):= {\(x \in \mathbb{R}^n \mid a ^T_i x\leq 1\)} be the random polyhedron generated by. Furthermore, for linearly independent vectors \(u\), \(\bar u\) in \(\mathbb{R}^n\), let \(S_{u, \bar u}(X)\) be the number of shadow vertices of \(X\) in \(span (u, \bar u\)). The paper provides an asymptotic expansion of the expectation value \(E (S_{u, \bar u})\) for fixed \(n\) and \(m\to\infty\). The first terms of the expansion are given explicitly. Our investigation of \(E (S_{u, \bar u})\) is closely connected to Borgwardt's probabilistic analysis of the shadow vertex algorithm - a parametric variant of the simplex algorithm. We obtain an improved asymptotic upper bound for the number of pivot steps required by the shadow vertex algorithm for uniformly on the sphere distributed data.

The local solution problem of multivariate Fredholm integral equations is studied. Recent research proved that for several function classes the complexity of this problem is closely related to the Gelfand numbers of some characterizing operators. The generalization of this approach to the situation of arbitrary Banach spaces is the subject of the present paper.
Furthermore, an iterative algorithm is described which - under some additional conditions - realizes the optimal error rate. The way these general theorems work is demonstrated by applying them to integral equations in a Sobolev space of periodic functions with dominating mixed derivative of various order.