### Refine

#### Year of publication

- 1995 (17) (remove)

#### Document Type

- Report (17) (remove)

#### Language

- English (17) (remove)

#### Faculty / Organisational entity

Experience gathered from applying the software process modeling language MVP-L in software development organizations has shown the need for graphical representations of process models. Project members (i.e„ non MVP-L specialists) review models much more easily by using graphical representations. Although several various graphical notations were developed for individual projects in which MVP-L was applied, there was previously no consistent definition of a mapping between textual MVP-L models and graphical representations. This report defines a graphical representation schema for MVP-L
descriptions and combines previous results in a unified form. A basic set of building blocks (i.e., graphical symbols and text fragments) is defined, but because we must first gain experience with the new symbols, only rudimentary guidelines are given for composing basic
symbols into a graphical representation of a model.

Let \(a_1,\dots,a_m\) be i.i .d. vectors uniform on the unit sphere in \(\mathbb{R}^n\), \(m\ge n\ge3\) and let \(X\):= {\(x \in \mathbb{R}^n \mid a ^T_i x\leq 1\)} be the random polyhedron generated by. Furthermore, for linearly independent vectors \(u\), \(\bar u\) in \(\mathbb{R}^n\), let \(S_{u, \bar u}(X)\) be the number of shadow vertices of \(X\) in \(span (u, \bar u\)). The paper provides an asymptotic expansion of the expectation value \(E (S_{u, \bar u})\) for fixed \(n\) and \(m\to\infty\). The first terms of the expansion are given explicitly. Our investigation of \(E (S_{u, \bar u})\) is closely connected to Borgwardt's probabilistic analysis of the shadow vertex algorithm - a parametric variant of the simplex algorithm. We obtain an improved asymptotic upper bound for the number of pivot steps required by the shadow vertex algorithm for uniformly on the sphere distributed data.

The local solution problem of multivariate Fredholm integral equations is studied. Recent research proved that for several function classes the complexity of this problem is closely related to the Gelfand numbers of some characterizing operators. The generalization of this approach to the situation of arbitrary Banach spaces is the subject of the present paper.
Furthermore, an iterative algorithm is described which - under some additional conditions - realizes the optimal error rate. The way these general theorems work is demonstrated by applying them to integral equations in a Sobolev space of periodic functions with dominating mixed derivative of various order.

In multiple criteria optimization an important research topic is the topological structure of the set \( X_e \) of efficient solutions. Of major interest is the connectedness of \( X_e \), since it would allow the determination of \( X_e \) without considering non-efficient solutions in the
process. We review general results on the subject,including the connectedness result for efficient solutions in multiple criteria linear programming. This result can be used to derive a definition of connectedness for discrete optimization problems. We present a counterexample to a previously stated result in this area, namely that the set of efficient solutions of the shortest path problem is connected. We will also show that connectedness does not hold for another important problem in discrete multiple criteria optimization: the spanning tree problem.

This paper introduces a new high Level programming language for a novel
class of computational devices namely data-procedural machines. These machines are by up to several orders of magnitude more efficient than the von Neumann paradigm of computers and are as flexible and as universal as computers. Their efficiency and flexibility is achieved by using field-programmable logic as the essential technology platform. The paper briefly summarizes and illustrates the essential new features of this language by means of two example programs.

The \(L_2\)-discrepancy is a quantitative measure of precision for multivariate quadrature rules. It can be computed explicitly. Previously known algorithms needed \(O(m^2\)) operations, where \(m\) is the number of nodes. In this paper we present algorithms which require
\(O(m(log m)^d)\) operations.

In this paper an analytic hidden surface removal algorithm is presented which uses a combination
of 2D and 3D BSP trees without involving point sampling or scan conversion. Errors like aliasing
which result from sampling do not occur while using this technique. An application of this
algorithm is outlined which computes the energy locally reflected from a surface having an
arbitrary BRDF. A simplification for diffuse reflectors is described, which has been implemented
to compute analytic form factors from diffuse light sources to differential receivers as they are needed for shading and radiosity algorithms.

In this paper, the complexity of full solution of Fredholm integral equations of the second kind with data from the Sobolev class \(W^r_2\) is studied. The exact order of information complexity is derived. The lower bound is proved using a Gelfand number technique. The upper bound is shown by providing a concrete algorithm of optimal order, based on a specific hyperbolic cross approximation of the kernel function. Numerical experiments are included, comparing the optimal algorithm with the standard Galerkin method.