### Refine

#### Keywords

- nonparametric regression (5) (remove)

We consider an autoregressive process with a nonlinear regression function that is modeled by a feedforward neural network. We derive a uniform central limit theorem which is useful in the context of change-point analysis. We propose a test for a change in the autoregression function which - by the uniform central limit theorem - has asymptotic power one for a large class of alternatives including local alternatives.

In this paper we develop monitoring schemes for detecting structural changes
in nonlinear autoregressive models. We approximate the regression function by a
single layer feedforward neural network. We show that CUSUM-type tests based
on cumulative sums of estimated residuals, that have been intensively studied
for linear regression in both an offline as well as online setting, can be extended
to this model. The proposed monitoring schemes reject (asymptotically) the null
hypothesis only with a given probability but will detect a large class of alternatives
with probability one. In order to construct these sequential size tests the limit
distribution under the null hypothesis is obtained.

We consider data generating mechanisms which can be represented as mixtures of finitely many regression or autoregression models. We propose nonparametric estimators for the functions characterizing the various mixture components based on a local quasi maximum likelihood approach and prove their consistency. We present an EM algorithm for calculating the estimates numerically which is mainly based on iteratively applying common local smoothers and discuss its convergence properties.

In this paper we develop testing procedures for the detection of structural changes in nonlinear autoregressive processes. For the detection procedure we model the regression function by a single layer feedforward neural network. We show that CUSUM-type tests based on cumulative sums of estimated residuals, that have been intensively studied for linear regression, can be extended to this case. The limit distribution under the null hypothesis is obtained, which is needed to construct asymptotic tests. For a large class of alternatives it is shown that the tests have asymptotic power one. In this case, we obtain a consistent change-point estimator which is related to the test statistics. Power and size are further investigated in a small simulation study with a particular emphasis on situations where the model is misspecified, i.e. the data is not generated by a neural network but some other regression function. As illustration, an application on the Nile data set as well as S&P log-returns is given.