### Refine

#### Year of publication

- 2003 (29) (remove)

#### Document Type

- Report (29) (remove)

#### Has Fulltext

- yes (29)

#### Is part of the Bibliography

- no (29)

#### Keywords

- Lineare Algebra (4)
- Mathematikunterricht (4)
- Modellierung (4)
- linear algebra (4)
- modelling (4)
- praxisorientiert (4)
- mathematical education (3)
- Ambient Intelligence (2)
- Elektrotechnik (2)
- Lineare Optimierung (2)
- Regelung (2)
- Simplex (2)
- Stücklisten (2)
- Szenario (2)
- linear optimization (2)
- praxis orientated (2)
- simplex (2)
- : Navier-Stokes equations (1)
- : multiple criteria optimization (1)
- : multiple objective programming (1)
- AG-RESY (1)
- AKLEON (1)
- Blocked Neural Networks (1)
- Brinkman (1)
- CAD (1)
- Code Inspection (1)
- Discrete linear systems (1)
- Folgar-Tucker equation (1)
- Fräsen (1)
- Hals-Nasen-Ohren-Chirurgie (1)
- Hals-Nasen-Ohren-Heilkunde (1)
- Hankel matrix (1)
- Heston model (1)
- Hörgerät (1)
- Implantation (1)
- Informatik (1)
- Integer programming (1)
- Knowledge Extraction (1)
- META-AKAD (1)
- Mastoid (1)
- Mastoidektomie (1)
- Multicriteria decision making (1)
- Navier-Stokes (1)
- Networked Control Systems (1)
- Netzwerk (1)
- Nonlinear Regression (1)
- Nonlinear multigrid (1)
- Ohrenchirurgie (1)
- Option pricing (1)
- Produktion (1)
- RONAF (1)
- Roboter (1)
- SIMPLE (1)
- Schädelchirurgie (1)
- Stein equation (1)
- adaptive local refinement (1)
- adaptive refinement (1)
- adaptive triangulation (1)
- asymptotic homogenization (1)
- automated analog circuit design (1)
- batch presorting problem (1)
- behavioral modeling (1)
- bills of material (1)
- bills of materials (1)
- circuit sizing (1)
- cliquet options (1)
- clustering and disaggregation techniques (1)
- competetive analysis (1)
- computer algebra (1)
- coupled flow in plain and porous media (1)
- decision support systems (1)
- dif (1)
- discrete facility location (1)
- discrete location (1)
- efficient set (1)
- evolutionary algorithms (1)
- expert system (1)
- fatigue (1)
- fiber orientation (1)
- forward starting options (1)
- fuzzy logic (1)
- genetic algorithms (1)
- incompressible flow (1)
- injection molding (1)
- interactive navigation (1)
- knowledge management (1)
- knowledge representation (1)
- lid-driven flow in a (1)
- logistics (1)
- macro modeling (1)
- mastoid (1)
- mastoidectomy (1)
- mathematica education (1)
- model reduction (1)
- multigrid methods (1)
- multiscale structures (1)
- non-Newtonian flow in porous media (1)
- non-local conditions (1)
- numerical simulation (1)
- oil filters (1)
- online optimization (1)
- otorhinolaryngological surgery (1)
- polynomial algorithms (1)
- project management and scheduling (1)
- projection-type splitting (1)
- real-life applications. (1)
- representative systems of Pareto solutions (1)
- singularity (1)
- software development (1)
- stability (1)
- stochastic volatility (1)
- strategic (1)
- strength (1)
- supply chain management (1)
- symbolic analysis (1)
- system simulation (1)
- variable neighborhood search (1)
- visual (1)
- visual interfaces (1)

#### Faculty / Organisational entity

In this paper we consider the location of stops along the edges of an already existing public transportation network, as introduced in [SHLW02]. This can be the introduction of bus stops along some given bus routes, or of railway stations along the tracks in a railway network. The goal is to achieve a maximal covering of given demand points with a minimal number of stops. This bicriterial problem is in general NP-hard. We present a nite dominating set yielding an IP-formulation as a bicriterial set covering problem. We use this formulation to observe that along one single straight line the bicriterial stop location problem can be solved in polynomial time and present an e cient solution approach for this case. It can be used as the basis of an algorithm tackling real-world instances.

In this article, we consider the problem of planning inspections and other tasks within a software development (SD) project with respect to the objectives quality (no. of defects), project duration, and costs. Based on a discrete-event simulation model of SD processes comprising the phases coding, inspection, test, and rework, we present a simplified formulation of the problem as a multiobjective optimization problem. For solving the problem (i.e. finding an approximation of the efficient set) we develop a multiobjective evolutionary algorithm. Details of the algorithm are discussed as well as results of its application to sample problems.

Radiation therapy planning is always a tight rope walk between dangerous insufficient dose in the target volume and life threatening overdosing of organs at risk. Finding ideal balances between these inherently contradictory goals challenges dosimetrists and physicians in their daily practice. Today’s planning systems are typically based on a single evaluation function that measures the quality of a radiation treatment plan. Unfortunately, such a one dimensional approach cannot satisfactorily map the different backgrounds of physicians and the patient dependent necessities. So, too often a time consuming iteration process between evaluation of dose distribution and redefinition of the evaluation function is needed. In this paper we propose a generic multi-criteria approach based on Pareto’s solution concept. For each entity of interest - target volume or organ at risk a structure dependent evaluation function is defined measuring deviations from ideal doses that are calculated from statistical functions. A reasonable bunch of clinically meaningful Pareto optimal solutions are stored in a data base, which can be interactively searched by physicians. The system guarantees dynamical planning as well as the discussion of tradeoffs between different entities. Mathematically, we model the upcoming inverse problem as a multi-criteria linear programming problem. Because of the large scale nature of the problem it is not possible to solve the problem in a 3D-setting without adaptive reduction by appropriate approximation schemes. Our approach is twofold: First, the discretization of the continuous problem is based on an adaptive hierarchical clustering process which is used for a local refinement of constraints during the optimization procedure. Second, the set of Pareto optimal solutions is approximated by an adaptive grid of representatives that are found by a hybrid process of calculating extreme compromises and interpolation methods.

Industrial analog circuits are usually designed using numerical simulation tools. To obtain a deeper circuit understanding, symbolic analysis techniques can additionally be applied. Approximation methods which reduce the complexity of symbolic expressions are needed in order to handle industrial-sized problems. This paper will give an overview to the field of symbolic analog circuit analysis. Starting with a motivation, the state-of-the-art simplification algorithms for linear as well as for nonlinear circuits are presented. The basic ideas behind the different techniques are described, whereas the technical details can be found in the cited references. Finally, the application of linear and nonlinear symbolic analysis will be shown on two example circuits.

Asymptotic homogenisation technique and two-scale convergence is used for analysis of macro-strength and fatigue durability of composites with a periodic structure under cyclic loading. The linear damage accumulation rule is employed in the phenomenological micro-durability conditions (for each component of the composite) under varying cyclic loading. Both local and non-local strength and durability conditions are analysed. The strong convergence of the strength and fatigue damage measure as the structure period tends to zero is proved and their limiting values are estimated.

We present two heuristic methods for solving the Discrete Ordered Median Problem (DOMP), for which no such approaches have been developed so far. The DOMP generalizes classical discrete facility location problems, such as the p-median, p-center and Uncapacitated Facility Location problems. The first procedure proposed in this paper is based on a genetic algorithm developed by Moreno Vega [MV96] for p-median and p-center problems. Additionally, a second heuristic approach based on the Variable Neighborhood Search metaheuristic (VNS) proposed by Hansen & Mladenovic [HM97] for the p-median problem is described. An extensive numerical study is presented to show the efficiency of both heuristics and compare them.

The Discrete Ordered Median Problem (DOMP) generalizes classical discrete location problems, such as the N-median, N-center and Uncapacitated Facility Location problems. It was introduced by Nickel [16], who formulated it as both a nonlinear and a linear integer program. We propose an alternative integer linear programming formulation for the DOMP, discuss relationships between both integer linear programming formulations, and show how properties of optimal solutions can be used to strengthen these formulations. Moreover, we present a specific branch and bound procedure to solve the DOMP more efficiently. We test the integer linear programming formulations and this branch and bound method computationally on randomly generated test problems.

A new stability preserving model reduction algorithm for discrete linear SISO-systems based on their impulse response is proposed. Similar to the Padé approximation, an equation system for the Markov parameters involving the Hankel matrix is considered, that here however is chosen to be of very high dimension. Although this equation system therefore in general cannot be solved exactly, it is proved that the approximate solution, computed via the Moore-Penrose inverse, gives rise to a stability preserving reduction scheme, a property that cannot be guaranteed for the Padé approach. Furthermore, the proposed algorithm is compared to another stability preserving reduction approach, namely the balanced truncation method, showing comparable performance of the reduced systems. The balanced truncation method however starts from a state space description of the systems and in general is expected to be more computational demanding.

This report explains basic notions and concepts of Abstract State Machines (ASM) as well as notation for defining ASM models. The objective here is to provide an intuitive understanding of the formalism; for a rigorous definition of the mathematical foundations of ASM, the reader is referred to [2] and [3]. Further references on ASM-related material can be found on the ASM Web Pages [1].