### Refine

#### Year of publication

- 2003 (29) (remove)

#### Document Type

- Report (29) (remove)

#### Keywords

- Lineare Algebra (4)
- Mathematikunterricht (4)
- Modellierung (4)
- linear algebra (4)
- modelling (4)
- praxisorientiert (4)
- mathematical education (3)
- Ambient Intelligence (2)
- Elektrotechnik (2)
- Lineare Optimierung (2)
- Regelung (2)
- Simplex (2)
- Stücklisten (2)
- Szenario (2)
- linear optimization (2)
- praxis orientated (2)
- simplex (2)
- : Navier-Stokes equations (1)
- : multiple criteria optimization (1)
- : multiple objective programming (1)
- AG-RESY (1)
- AKLEON (1)
- Blocked Neural Networks (1)
- Brinkman (1)
- CAD (1)
- Code Inspection (1)
- Discrete linear systems (1)
- Folgar-Tucker equation (1)
- Fräsen (1)
- Hals-Nasen-Ohren-Chirurgie (1)
- Hals-Nasen-Ohren-Heilkunde (1)
- Hankel matrix (1)
- Heston model (1)
- Hörgerät (1)
- Implantation (1)
- Informatik (1)
- Integer programming (1)
- Knowledge Extraction (1)
- META-AKAD (1)
- Mastoid (1)
- Mastoidektomie (1)
- Multicriteria decision making (1)
- Navier-Stokes (1)
- Networked Control Systems (1)
- Netzwerk (1)
- Nonlinear Regression (1)
- Nonlinear multigrid (1)
- Ohrenchirurgie (1)
- Option pricing (1)
- Produktion (1)
- RONAF (1)
- Roboter (1)
- SIMPLE (1)
- Schädelchirurgie (1)
- Stein equation (1)
- adaptive local refinement (1)
- adaptive refinement (1)
- adaptive triangulation (1)
- asymptotic homogenization (1)
- automated analog circuit design (1)
- batch presorting problem (1)
- behavioral modeling (1)
- bills of material (1)
- bills of materials (1)
- circuit sizing (1)
- cliquet options (1)
- clustering and disaggregation techniques (1)
- competetive analysis (1)
- computer algebra (1)
- coupled flow in plain and porous media (1)
- decision support systems (1)
- dif (1)
- discrete facility location (1)
- discrete location (1)
- efficient set (1)
- evolutionary algorithms (1)
- expert system (1)
- fatigue (1)
- fiber orientation (1)
- forward starting options (1)
- fuzzy logic (1)
- genetic algorithms (1)
- incompressible flow (1)
- injection molding (1)
- interactive navigation (1)
- knowledge management (1)
- knowledge representation (1)
- lid-driven flow in a (1)
- logistics (1)
- macro modeling (1)
- mastoid (1)
- mastoidectomy (1)
- mathematica education (1)
- model reduction (1)
- multigrid methods (1)
- multiscale structures (1)
- non-Newtonian flow in porous media (1)
- non-local conditions (1)
- numerical simulation (1)
- oil filters (1)
- online optimization (1)
- otorhinolaryngological surgery (1)
- polynomial algorithms (1)
- project management and scheduling (1)
- projection-type splitting (1)
- real-life applications. (1)
- representative systems of Pareto solutions (1)
- singularity (1)
- software development (1)
- stability (1)
- stochastic volatility (1)
- strategic (1)
- strength (1)
- supply chain management (1)
- symbolic analysis (1)
- system simulation (1)
- variable neighborhood search (1)
- visual (1)
- visual interfaces (1)

#### Faculty / Organisational entity

In this paper we consider the location of stops along the edges of an already existing public transportation network, as introduced in [SHLW02]. This can be the introduction of bus stops along some given bus routes, or of railway stations along the tracks in a railway network. The goal is to achieve a maximal covering of given demand points with a minimal number of stops. This bicriterial problem is in general NP-hard. We present a nite dominating set yielding an IP-formulation as a bicriterial set covering problem. We use this formulation to observe that along one single straight line the bicriterial stop location problem can be solved in polynomial time and present an e cient solution approach for this case. It can be used as the basis of an algorithm tackling real-world instances.

Objective: In some surgical specialties, e.g. orthopedics, robots are already used in the operating room for bony milling work. Oto- and otoneurosurgery may also greatly benefit by robotic enhanced precision. Study Design: Experimental study on robotic milling on oak wood and human temporal bone specimen. Methods: A standard industrial robot with a 6 degrees-of-freedom serial kinematics was used with force feedback to proportionally control the robot speed. Different milling modes and characteristic path parameters were evaluated to generate milling paths based on CAD geometry data of a cochlear implant and an implantable hearing system. Results: The best suited strategy proofed to be the spiral horizontal milling mode with the burr held perpendicularly to the temporal bone surface. In order to avoid high grooves, the distance in between paths should equal half the radius of the cutting burr head. Due to the vibration of the robot’s own motors, a rather high oscillation of the standard deviation of forces was encountered. This oscillation dropped drastically to nearly 0 N, when the burr head reached contact with the dura mater due to its damping characteristics. The cutting burr could be moved a long time on the dura without damaging it, because of its rather blunt head. The robot moved the burr very smoothly according to the encountered resistances. Conclusion: This is the first development of an functioning robotic milling procedure for otoneurosurgery with force-based speed control. It is planned to implement ultrasound-based local navigation and to perform robotic mastoidectomy.

In this paper, we present a novel multicriteria decision support system (MCDSS), called knowCube, consisting of components for knowledge organization, generation, and navigation. Knowledge organization rests upon a database for managing qualitative and quantitative criteria, together with add-on information. Knowledge generation serves filling the database via e.g. identification, optimization, classification or simulation. For “finding needles in haycocks”, the knowledge navigation component supports graphical database retrieval and interactive, goal-oriented problem solving. Navigation “helpers” are, for instance, cascading criteria aggregations, modifiable metrics, ergonomic interfaces, and customizable visualizations. Examples from real-life projects, e.g. in industrial engineering and in the life sciences, illustrate the application of our MCDSS.

This paper concerns numerical simulation of flow through oil filters. Oil filters consist of filter housing (filter box), and a porous filtering medium, which completely separates the inlet from the outlet. We discuss mathematical models, describing coupled flows in the pure liquid subregions and in the porous filter media, as well as interface conditions between them. Further, we reformulate the problem in fictitious regions method manner, and discuss peculiarities of the numerical algorithm in solving the coupled system. Next, we show numerical results, validating the model and the algorithm. Finally, we present results from simulation of 3-D oil flow through a real car filter.

On a Multigrid Adaptive Refinement Solver for Saturated Non-Newtonian Flow in Porous Media A multigrid adaptive refinement algorithm for non-Newtonian flow in porous media is presented. The saturated flow of a non-Newtonian fluid is described by the continuity equation and the generalized Darcy law. The resulting second order nonlinear elliptic equation is discretized by a finite volume method on a cell-centered grid. A nonlinear full-multigrid, full-approximation-storage algorithm is implemented. As a smoother, a single grid solver based on Picard linearization and Gauss-Seidel relaxation is used. Further, a local refinement multigrid algorithm on a composite grid is developed. A residual based error indicator is used in the adaptive refinement criterion. A special implementation approach is used, which allows us to perform unstructured local refinement in conjunction with the finite volume discretization. Several results from numerical experiments are presented in order to examine the performance of the solver.

We consider the problem of pricing European forward starting options in the presence of stochastic volatility. By performing a change of measure using the asset price at the time of strike determination as a numeraire, we derive a closed-form solution based on Heston’s model of stochastic volatility.

A non-linear multigrid solver for incompressible Navier-Stokes equations, exploiting finite volume discretization of the equations, is extended by adaptive local refinement. The multigrid is the outer iterative cycle, while the SIMPLE algorithm is used as a smoothing procedure. Error indicators are used to define the refinement subdomain. A special implementation approach is used, which allows to perform unstructured local refinement in conjunction with the finite volume discretization. The multigrid - adaptive local refinement algorithm is tested on 2D Poisson equation and further is applied to a lid-driven flows in a cavity (2D and 3D case), comparing the results with bench-mark data. The software design principles of the solver are also discussed.

One of the main goals of an organization developing software is to increase the quality of the software while at the same time to decrease the costs and the duration of the development process. To achieve this, various decisions e.ecting this goal before and during the development process have to be made by the managers. One appropriate tool for decision support are simulation models of the software life cycle, which also help to understand the dynamics of the software development process. Building up a simulation model requires a mathematical description of the interactions between di.erent objects involved in the development process. Based on experimental data, techniques from the .eld of knowledge discovery can be used to quantify these interactions and to generate new process knowledge based on the analysis of the determined relationships. In this paper blocked neuronal networks and related relevance measures will be presented as an appropriate tool for quanti.cation and validation of qualitatively known dependencies in the software development process.

The objective of the present article is to give an overview of an application of Fuzzy Logic in Regulation Thermography, a method of medical diagnosis support. An introduction to this method of the complementary medical science based on temperature measurements – so-called thermograms – is provided. The process of modelling the physician’s thermogram evaluation rules using the calculus of Fuzzy Logic is explained.