### Refine

#### Year of publication

#### Document Type

- Preprint (31)
- Periodical (6)
- Report (3)
- Doctoral Thesis (1)

#### Has Fulltext

- no (41) (remove)

#### Is part of the Bibliography

- no (41)

#### Keywords

- Wavelet (2)
- harmonic density (2)
- wavelets (2)
- Abstract linear systems theory (1)
- Aktivierung <Physiologie> (1)
- Brownian motion (1)
- CHAMP (1)
- CHAMP <Satellitenmission> (1)
- GABAerge Nervenzelle (1)
- Geomathematik (1)

#### Faculty / Organisational entity

In this paper, we deal with the problem of spherical interpolation of discretely given data of tensorial type. To this end, spherical tensor fields are investigated and a decomposition formula is described. Tensor spherical harmonics are introduced as eigenfunctions of a tensorial analogon to the Beltrami operator and discussed in detail. Based on these preliminaries, a spline interpolation process is described and error estimates are presented. Furthermore, some relations between the spline basis functions and the theory of radial basis functions are developed.

Discrete families of functions with the property that every function in a certain space can be represented by its formal Fourier series expansion are developed on the sphere. A Fourier series type expansion is obviously true if the family is an orthonormal basis of a Hilbert space, but it also can hold in situations where the family is not orthogonal and is overcomplete. Furthermore, all functions in our approach are axisymmetric (depending only on the spherical distance) so that they can be used adequately in (rotation) invariant pseudodifferential equations on the frames (ii) Gauss- Weierstrass frames, and (iii) frames consisting of locally supported kernel functions. Abel-Poisson frames form families of harmonic functions and provide us with powerful approximation tools in potential theory. Gauss-Weierstrass frames are intimately related to the diffusion equation on the sphere and play an important role in multiscale descriptions of image processing on the sphere. The third class enables us to discuss spherical Fourier expansions by means of axisymmetric finite elements.

Spline functions that interpolate data given on the sphere are developed in a weighted Sobolev space setting. The flexibility of the weights makes possible the choice of the approximating function in a way which emphasizes attributes desirable for the particular application area. Examples show that certain choices of the weight sequences yield known methods. A pointwise convergence theorem containing explicit constants yields a useable error bound.

Some new approximation methods are described for harmonic functions corresponding to boundary values on the (unit) sphere. Starting from the usual Fourier (orthogonal) series approach, we propose here nonorthogonal expansions, i.e. series expansions in terms of overcomplete systems consisting of localizing functions. In detail, we are concerned with the so-called Gabor, Toeplitz, and wavelet expansions. Essential tools are modulations, rotations, and dilations of a mother wavelet. The Abel-Poisson kernel turns out to be the appropriate mother wavelet in approximation of harmonic functions from potential values on a spherical boundary.

A concept of generalized discrepancy, which involves pseudodifferential operators to give a criterion of equidistributed pointsets, is developed on the sphere. A simply structured formula in terms of elementary functions is established for the computation of the generalized discrepancy. With the help of this formula five kinds of point systems on the sphere, namely lattices in polar coordinates, transformed 2-dimensional sequences, rotations on the sphere, triangulation, and sum of three squares sequence, are investigated. Quantitative tests are done, and the results are compared with each other. Our calculations exhibit different orders of convergence of the generalized discrepancy for different types of point systems.

The basic theory of spherical singular integrals is recapitulated. Criteria are given for measuring the space-frequency localization of functions on the sphere. The trade off between space localization on the sphere and frequency localization in terms of spherical harmonics is described in form of an uncertainty principle. A continuous version of spherical multiresolution is introduced, starting from continuous wavelet transform corresponding to spherical wavelets with vanishing moments up to a certain order. The wavelet transform is characterized by least-squares properties. Scale discretization enables us to construct spherical counterparts of wavelet packets and scale discrete Daubechies" wavelets. It is shown that singular integral operators forming a semigroup of contraction operators of class (Co) (like Abel-Poisson or Gauß-Weierstraß operators) lead in canonical way to pyramyd algorithms. Fully discretized wavelet transforms are obtained via approximate integration rules on the sphere. Finally applications to (geo-)physical reality are discussed in more detail. A combined method is proposed for approximating the low frequency parts of a physical quantity by spherical harmonics and the high frequency parts by spherical wavelets. The particular significance of this combined concept is motivated for the situation of today" s physical geodesy, viz. the determination of the high frequency parts of the earth" s gravitational potential under explicit knowledge of the lower order part in terms of a spherical harmonic expansion.

Spline functions that approximate data given on the sphere are developed in a weighted Sobolev space setting. The flexibility of the weights makes possible the choice of the approximating function in a way which emphasizes attributes desirable for the particular application area. Examples show that certain choices of the weight sequences yield known methods. A convergence theorem containing explicit constants yields a usable error bound. Our survey ends with the discussion of spherical splines in geodetically relevant pseudodifferential equations.

The static deformation of the surface of the earth caused by surface pressure like the water load of an ocean or an artificial lake is discussed. First a brief mention is made on the solution of the Boussenesq problem for an infinite halfspace with the elastic medium to be assumed as homogeneous and isotropic. Then the elastic response for realistic earth models is determinied by spline interpolation using Navier splines. Major emphasis is on the derteminination of the elastic field caused by water loads from surface tractions on the (real) earth" s surface. Finally the elastic deflection of an artificial lake assuming a homogeneous isotropic crust is compared for both evaluation methods.

A continuous version of spherical multiresolution is described, starting from continuous wavelet transform on the sphere. Scale discretization enables us to construct spherical counterparts to Daubechies wavelets and wavelet packets (known from Euclidean theory). Essential tool is the theory of singular integrals on the sphere. It is shown that singular integral operators forming a semigroup of contraction operators of class (Co) (like Abel-Poisson or Gauß-Weierstraß operators) lead in canonical way to (pyramidal) algorithms.

The paper discusses the approximation of scattered data on the sphere which is one of the major tasks in geomathematics. Starting from the discretization of singular integrals on the sphere the authors devise a simple approximation method that employs locally supported spherical polynomials and does not require equidistributed grids. It is the basis for a hierarchical approximation algorithm using differently scaled basis functions, adaptivity and error control. The method is applied to two examples one of which is a digital terrain model of Australia.