Refine
Year of publication
- 1999 (178) (remove)
Document Type
- Preprint (178) (remove)
Language
- English (178) (remove)
Keywords
Faculty / Organisational entity
- Fachbereich Informatik (178) (remove)
We present an approach to learning cooperative behavior of agents. Our ap-proach is based on classifying situations with the help of the nearest-neighborrule. In this context, learning amounts to evolving a set of good prototypical sit-uations. With each prototypical situation an action is associated that should beexecuted in that situation. A set of prototypical situation/action pairs togetherwith the nearest-neighbor rule represent the behavior of an agent.We demonstrate the utility of our approach in the light of variants of thewell-known pursuit game. To this end, we present a classification of variantsof the pursuit game, and we report on the results of our approach obtained forvariants regarding several aspects of the classification. A first implementationof our approach that utilizes a genetic algorithm to conduct the search for a setof suitable prototypical situation/action pairs was able to handle many differentvariants.
The common wisdom that goal orderings can be used to improve planning performance is nearly as old as planning itself. During the last decades of research several approaches emerged that computed goal orderings for different planning paradigms, mostly in the area of state-space planning. For partial-order, plan-space planners goal orderings have not been investigated in much detail. Mechanisms developed for statespace planning are not directly applicable because partial-order planners do not have a current (world) state. Further, it is not completely clear how plan-space planners should make use of goal orderings. This paper describes an approach to extract goal orderings to be used by the plan-space planner CAPlan. The extraction of goal orderings is based on the analysis of an extended version of operator graphs which previously have been found useful for the analysis of interactions and recursion of plan-space planners.
We describe a hybrid architecture supporting planning for machining workpieces. The archi- tecture is built around CAPlan, a partial-order nonlinear planner that represents the plan already generated and allows external control decision made by special purpose programs or by the user. To make planning more efficient, the domain is hierarchically modelled. Based on this hierarchical representation, a case-based control component has been realized that allows incremental acquisition of control knowledge by storing solved problems and reusing them in similar situations.
We describe a hybrid case-based reasoning system supporting process planning for machining workpieces. It integrates specialized domain dependent reasoners, a feature-based CAD system and domain independent planning. The overall architecture is build on top of CAPlan, a partial-order nonlinear planner. To use episodic problem solving knowledge for both optimizing plan execution costs and minimizing search the case-based control component CAPlan/CbC has been realized that allows incremental acquisition and reuse of strategical problem solving experience by storing solved problems as cases and reusing them in similar situations. For effective retrieval of cases CAPlan/CbC combines domain-independent and domain-specific retrieval mechanisms that are based on the hierarchical domain model and problem representation.
The feature interaction problem in telecommunications systems increasingly obstructsthe evolution of such systems. We develop formal detection criteria which render anecessary (but less than sufficient) condition for feature interactions. It can be checkedmechanically and points out all potentially critical spots. These have to be analyzedmanually. The resulting resolution decisions are incorporated formally. Some prototypetool support is already available. A prerequisite for formal criteria is a formal definitionof the problem. Since the notions of feature and feature interaction are often used in arather fuzzy way, we attempt a formal definition first and discuss which aspects can beincluded in a formalization (and therefore in a detection method). This paper describeson-going work.
Contrary to symbolic learning approaches, which represent a learned concept explicitly, case-based approaches describe concepts implicitly by a pair (CB; sim), i.e. by a measure of similarity sim and a set CB of cases. This poses the question if there are any differences concerning the learning power of the two approaches. In this article we will study the relationship between the case base, the measure of similarity, and the target concept of the learning process. To do so, we transform a simple symbolic learning algorithm (the version space algorithm) into an equivalent case- based variant. The achieved results strengthen the hypothesis of the equivalence of the learning power of symbolic and case-based methods and show the interdependency between the measure used by a case-based algorithm and the target concept.
Collecting Experience on the Systematic Development of CBR Applications using the INRECA Methodology
(1999)
This paper presents an overview of the INRECA methodology for building and maintaining CBR applications. This methodology supports the collection and reuse of experience on the systematic development of CBR applications. It is based on the experience factory and the software process modeling approach from software engineering. CBR development experience is documented using software process models and stored in different levels of generality in a three-layered experience base. Up to now, experience from 9 industrial projects enacted by all INRECA II partners has been collected.
Automata-Theoretic vs. Property-Oriented Approaches for the Detection of Feature Interactions in IN
(1999)
The feature interaction problem in Intelligent Networks obstructs more and morethe rapid introduction of new features. Detecting such feature interactions turns out to be a big problem. The size of the systems and the sheer computational com-plexity prevents the system developer from checking manually any feature against any other feature. We give an overview on current (verification) approaches and categorize them into property-oriented and automata-theoretic approaches. A comparisonturns out that each approach complements the other in a certain sense. We proposeto apply both approaches together in order to solve the feature interaction problem.
Planning means constructing a course of actions to achieve a specified set of goals when starting from an initial situation. For example, determining a sequence of actions (a plan) for transporting goods from an initial location to some destination is a typical planning problem in the transportation domain. Many planning problems are of practical interest.
MOLTKE is a research project dealing with a complex technical application. After describing the domain of CNCmachining centers and the applied KA methods, we summarize the concrete KA problems which we have to handle. Then we describe a KA mechanism which supports an engineer in developing a diagnosis system. In chapter 6 weintroduce learning techniques operating on diagnostic cases and domain knowledge for improving the diagnostic procedure of MOLTKE. In the last section of this chapter we outline some essential aspects of organizationalknowledge which is heavily applied by engineers for analysing such technical systems (Qualitative Engineering). Finally we give a short overview of the actual state of realization and our future plans.