### Refine

#### Year of publication

#### Document Type

- Preprint (1149) (remove)

#### Has Fulltext

- yes (1149) (remove)

#### Keywords

- AG-RESY (17)
- Case-Based Reasoning (16)
- RODEO (10)
- Approximation (9)
- Fallbasiertes Schliessen (9)
- Mehrskalenanalyse (9)
- Wavelet (8)
- Boltzmann Equation (7)
- Inverses Problem (7)
- Location Theory (7)

#### Faculty / Organisational entity

- Fachbereich Mathematik (573)
- Fachbereich Informatik (346)
- Fachbereich Physik (159)
- Fraunhofer (ITWM) (19)
- Fachbereich Elektrotechnik und Informationstechnik (17)
- Fachbereich Maschinenbau und Verfahrenstechnik (17)
- Fachbereich Wirtschaftswissenschaften (15)
- Universitätsbibliothek (2)
- Fachbereich Sozialwissenschaften (1)

An isogeometric Reissner-Mindlin shell derived from the continuum theory is presented. The geometry is described by NURBS surfaces. The kinematic description of the employed shell theory requires the interpolation of the director vector and of a local basis system. Hence, the definition of nodal basis systems at the control points is necessary for the proposed formulation. The control points are in general not located on the shell reference surface and thus, several choices for the nodal values are possible. The proposed new method uses the higher continuity of the geometrical description to calculate nodal basis system and director vectors which lead to geometrical exact interpolated values thereof. Thus, the initial director vector coincides with the normal vector even for the coarsest mesh. In addition to that a more accurate interpolation of the current director and its variation is proposed. Instead of the interpolation of nodal director vectors the new approach interpolates nodal rotations. Account is taken for the discrepancy between interpolated basis systems and the individual nodal basis systems with an additional transformation. The exact evaluation of the initial director vector along with the interpolation of the nodal rotations lead to a shell formulation which yields precise results even for coarse meshes. The convergence behavior is shown to be correct for k-refinement allowing the use of coarse meshes with high orders of NURBS basis functions. This is potentially advantageous for applications with high numerical effort per integration point. The geometrically nonlinear formulation accounts for large rotations. The consistent tangent matrix is derived. Various standard benchmark examples show the superior accuracy of the presented shell formulation. A new benchmark designed to test the convergence behavior for free form surfaces is presented. Despite the higher numerical effort per integration point the improved accuracy yields considerable savings in computation cost for a predefined error bound.

In this contribution a mortar-type method for the coupling of non-conforming NURBS surface patches is proposed. The connection of non-conforming patches with shared degrees of freedom requires mutual refinement, which propagates throughout the whole patch due to the tensor-product structure of NURBS surfaces. Thus, methods to handle non-conforming meshes are essential in NURBS-based isogeometric analysis. The main objective of this work is to provide a simple and efficient way to couple the individual patches of complex geometrical models without altering the variational formulation. The deformations of the interface control points of adjacent patches are interrelated with a master-slave relation. This relation is established numerically using the weak form of the equality of mutual deformations along the interface. With the help of this relation the interface degrees of freedom of the slave patch can be condensated out of the system. A natural connection of the patches is attained without additional terms in the weak form. The proposed method is also applicable for nonlinear computations without further measures. Linear and geometrical nonlinear examples show the high accuracy and robustness of the new method. A comparison to reference results and to computations with the Lagrange multiplier method is given.

We propose and study a strongly coupled PDE-ODE-ODE system modeling cancer cell invasion through a tissue network
under the go-or-grow hypothesis asserting that cancer cells can either move or proliferate. Hence our setting features
two interacting cell populations with their mutual transitions and involves tissue-dependent degenerate diffusion and
haptotaxis for the moving subpopulation. The proliferating cells and the tissue evolution are characterized by way of ODEs
for the respective densities. We prove the global existence of weak solutions and illustrate the model behaviour by
numerical simulations in a two-dimensional setting.

In this paper, we discuss the problem of approximating ellipsoid uncertainty sets with bounded (gamma) uncertainty sets. Robust linear programs with ellipsoid uncertainty lead to quadratically constrained programs, whereas robust linear programs with bounded uncertainty sets remain linear programs which are generally easier to solve.
We call a bounded uncertainty set an inner approximation of an ellipsoid if it is contained in it. We consider two different inner approximation problems. The first problem is to find a bounded uncertainty set which sticks close to the ellipsoid such that a shrank version of the ellipsoid is contained in it. The approximation is optimal if the required shrinking is minimal. In the second problem, we search for a bounded uncertainty set within the ellipsoid with maximum volume. We present how both problems can be solved analytically by stating explicit formulas for the optimal solutions of these problems.
Further, we present in a computational experiment how the derived approximation techniques can be used to approximate shortest path and network flow problems which are affected by ellipsoidal uncertainty.

For the prediction of digging forces from a granular material simulation, the
Nonsmooth Contact Dynamics Method is examined. First, the equations of motion
for nonsmooth mechanical systems are laid out. They are a differential
variational inequality that has the same structure as classical discrete algebraic equations. Using a Galerkin projection in time, it becomes possible to derive
nonsmooth versions of the classical SHAK and RATTLE integrators.
A matrix-free Interior Point Method is used for the complementarity
problems that need to be solved in every time step. It is shown that this method
outperforms the Projected Gauss-Jacobi method by several orders of magnitude
and produces the same digging force result as the Discrete Element Method in comparable computing time.

We consider the problem to evacuate several regions due to river flooding, where sufficient time is given to plan ahead. To ensure a smooth evacuation procedure, our model includes the decision which regions to assign to which shelter, and when evacuation orders should be issued, such that roads do not become congested.
Due to uncertainty in weather forecast, several possible scenarios are simultaneously considered in a robust optimization framework. To solve the resulting integer program, we apply a Tabu search algorithm based on decomposing the problem into better tractable subproblems. Computational experiments on random instances and an instance based on Kulmbach, Germany, data show considerable improvement compared to an MIP solver provided with a strong starting solution.

We present a new approach to handle uncertain combinatorial optimization problems that uses solution ranking procedures to determine the degree of robustness of a solution. Unlike classic concepts for robust optimization, our approach is not purely based on absolute quantitative performance, but also includes qualitative aspects that are of major importance for the decision maker.
We discuss the two variants, solution ranking and objective ranking robustness, in more detail, presenting problem complexities and solution approaches. Using an uncertain shortest path problem as a computational example, the potential of our approach is demonstrated in the context of evacuation planning due to river flooding.

We investigate a PDE-ODE system describing cancer cell invasion in a tissue network. The model is an extension of the multiscale setting in [28,40], by considering two subpopulations of tumor cells interacting mutually and with the surrounding tissue. According to the go-or-grow hypothesis, these subpopulations consist of moving and proliferating cells, respectively. The mathematical setting also accommodates the effects of some therapy approaches. We prove the global existence of weak solutions to this model and perform numerical simulations to illustrate its behavior for different therapy strategies.

We propose and study a strongly coupled PDE-ODE system with tissue-dependent degenerate diffusion and haptotaxis that can serve as a model prototype for cancer cell invasion through the
extracellular matrix. We prove the global existence of weak solutions and illustrate the model behaviour by numerical simulations for a two-dimensional setting.

We discuss the problem of evaluating a robust solution.
To this end, we first give a short primer on how to apply robustification approaches to uncertain optimization problems using the assignment problem and the knapsack problem as illustrative examples.
As it is not immediately clear in practice which such robustness approach is suitable for the problem at hand,
we present current approaches for evaluating and comparing robustness from the literature, and introduce the new concept of a scenario curve. Using the methods presented in this paper, an easy guide is given to the decision maker to find, solve and compare the best robust optimization method for his purposes.