### Refine

#### Year of publication

#### Document Type

- Preprint (1149) (remove)

#### Has Fulltext

- yes (1149) (remove)

#### Keywords

- AG-RESY (17)
- Case-Based Reasoning (16)
- RODEO (10)
- Approximation (9)
- Fallbasiertes Schliessen (9)
- Mehrskalenanalyse (9)
- Wavelet (8)
- Boltzmann Equation (7)
- Inverses Problem (7)
- Location Theory (7)

#### Faculty / Organisational entity

- Fachbereich Mathematik (573)
- Fachbereich Informatik (346)
- Fachbereich Physik (159)
- Fraunhofer (ITWM) (19)
- Fachbereich Elektrotechnik und Informationstechnik (17)
- Fachbereich Maschinenbau und Verfahrenstechnik (17)
- Fachbereich Wirtschaftswissenschaften (15)
- Universitätsbibliothek (2)
- Fachbereich Sozialwissenschaften (1)

Spatial regression models provide the opportunity to analyse spatial data and spatial processes. Yet, several model specifications can be used, all assuming different types of spatial dependence. This study summarises the most commonly used spatial regression models and offers a comparison of their performance by using Monte Carlo experiments. In contrast to previous simulations, this study evaluates the bias of the impacts rather than the regression coefficients and additionally provides results for situations with a non-spatial omitted variable bias. Results reveal that the most commonly used spatial autoregressive (SAR) and spatial error (SEM) specifications yield severe drawbacks. In contrast, spatial Durbin specifications (SDM and SDEM) as well as the simple SLX provide accurate estimates of direct impacts even in the case of misspecification. Regarding the indirect `spillover' effects, several - quite realistic - situations exist in which the SLX outperforms the more complex SDM and SDEM specifications.

In this article a new numerical solver for simulations of district heating networks is presented. The numerical method applies the local time stepping introduced in [11] to networks of linear advection equations. In combination with the high order approach of [4] an accurate and very efficient scheme is developed. In several numerical test cases the advantages for simulations of district heating networks are shown.

Multifacility location problems arise in many real world applications. Often, the facilities can only be placed in feasible regions such as development or industrial areas. In this paper we show the existence of a finite dominating set (FDS) for the planar multifacility location problem with polyhedral gauges as distance functions, and polyhedral feasible regions, if the interacting facilities form a tree. As application we show how to solve the planar 2-hub location problem in polynomial time. This approach will yield an ε-approximation for the euclidean norm case polynomial in the input data and 1/ε.

SDE-driven modeling of phenotypically heterogeneous tumors: The influence of cancer cell stemness
(2018)

We deduce cell population models describing the evolution of a tumor (possibly interacting with its
environment of healthy cells) with the aid of differential equations. Thereby, different subpopulations
of cancer cells allow accounting for the tumor heterogeneity. In our settings these include cancer
stem cells known to be less sensitive to treatment and differentiated cancer cells having a higher
sensitivity towards chemo- and radiotherapy. Our approach relies on stochastic differential equations
in order to account for randomness in the system, arising e.g., by the therapy-induced decreasing
number of clonogens, which renders a pure deterministic model arguable. The equations are deduced
relying on transition probabilities characterizing innovations of the two cancer cell subpopulations,
and similarly extended to also account for the evolution of normal tissue. Several therapy approaches
are introduced and compared by way of tumor control probability (TCP) and uncomplicated tumor
control probability (UTCP). A PDE approach allows to assess the evolution of tumor and normal
tissue with respect to time and to cell population densities which can vary continuously in a given set
of states. Analytical approximations of solutions to the obtained PDE system are provided as well.

We extend the standard concept of robust optimization by the introduction of an alternative solution. In contrast to the classic concept, one is allowed to chose two solutions from which the best can be picked after the uncertain scenario has been revealed. We focus in this paper on the resulting robust problem for combinatorial problems with bounded uncertainty sets. We present a reformulation of the robust problem which decomposes it into polynomially many subproblems. In each subproblem one needs to find two solutions which are connected by a cost function which penalizes if the same element is part of both solutions. Using this reformulation, we show how the robust problem can be solved efficiently for the unconstrained combinatorial problem, the selection problem, and the minimum spanning tree problem. The robust problem corresponding to the shortest path problem turns out to be NP-complete on general graphs. However, for series-parallel graphs, the robust shortest path problem can be solved efficiently. Further, we show how approximation algorithms for the subproblem can be used to compute approximate solutions for the original problem.

We continue in this paper the study of k-adaptable robust solutions for combinatorial optimization problems with bounded uncertainty sets. In this concept not a single solution needs to be chosen to hedge against the uncertainty. Instead one is allowed to choose a set of k different solutions from which one can be chosen after the uncertain scenario has been revealed. We first show how the problem can be decomposed into polynomially many subproblems if k is fixed. In the remaining part of the paper we consider the special case where k=2, i.e., one is allowed to choose two different solutions to hedge against the uncertainty. We decompose this problem into so called coordination problems. The study of these coordination problems turns out to be interesting on its own. We prove positive results for the unconstrained combinatorial optimization problem, the matroid maximization problem, the selection problem, and the shortest path problem on series parallel graphs. The shortest path problem on general graphs turns out to be NP-complete. Further, we present for minimization problems how to transform approximation algorithms for the coordination problem to approximation algorithms for the original problem. We study the knapsack problem to show that this relation does not hold for maximization problems in general. We present a PTAS for the corresponding coordination problem and prove that the 2-adaptable knapsack problem is not at all approximable.

This paper presents a case study of duty rostering for physicians at a department of orthopedics and trauma surgery. We provide a detailed description of the rostering problem faced and present an integer programming model that has been used in practice for creating duty rosters at the department for more than a year. Using real world data, we compare the model output to a manually generated roster as used previously by the department and analyze the quality of the rosters generated by the model over a longer time span. Moreover, we demonstrate how unforeseen events such as absences of scheduled physicians are handled.

We propose and study a strongly coupled PDE-ODE-ODE system modeling cancer cell invasion through a tissue network
under the go-or-grow hypothesis asserting that cancer cells can either move or proliferate. Hence our setting features
two interacting cell populations with their mutual transitions and involves tissue-dependent degenerate diffusion and
haptotaxis for the moving subpopulation. The proliferating cells and the tissue evolution are characterized by way of ODEs
for the respective densities. We prove the global existence of weak solutions and illustrate the model behaviour by
numerical simulations in a two-dimensional setting.

We propose and analyze a multiscale model for acid-mediated tumor invasion
accounting for stochastic effects on the subcellular level.
The setting involves a PDE of reaction-diffusion-taxis type describing the evolution of the tumor cell density,
the movement being directed towards pH gradients in the local microenvironment,
which is coupled to a PDE-SDE system characterizing the
dynamics of extracellular and intracellular proton concentrations, respectively.
The global well-posedness of the model is shown and
numerical simulations are performed in order to illustrate the solution behavior.

In this paper, we discuss the problem of approximating ellipsoid uncertainty sets with bounded (gamma) uncertainty sets. Robust linear programs with ellipsoid uncertainty lead to quadratically constrained programs, whereas robust linear programs with bounded uncertainty sets remain linear programs which are generally easier to solve.
We call a bounded uncertainty set an inner approximation of an ellipsoid if it is contained in it. We consider two different inner approximation problems. The first problem is to find a bounded uncertainty set which sticks close to the ellipsoid such that a shrank version of the ellipsoid is contained in it. The approximation is optimal if the required shrinking is minimal. In the second problem, we search for a bounded uncertainty set within the ellipsoid with maximum volume. We present how both problems can be solved analytically by stating explicit formulas for the optimal solutions of these problems.
Further, we present in a computational experiment how the derived approximation techniques can be used to approximate shortest path and network flow problems which are affected by ellipsoidal uncertainty.