### Refine

#### Year of publication

- 2012 (7) (remove)

#### Document Type

- Preprint (7) (remove)

#### Has Fulltext

- yes (7) (remove)

#### Keywords

- Convex geometry (1)
- Interpolation of the Director (1)
- Isogeometric Analysis (1)
- NURBS (1)
- Non-convex body (1)
- Parallel volume (1)
- Random body (1)
- Reissner-Mindlin Shell (1)
- Wills functional (1)

#### Faculty / Organisational entity

An isogeometric Reissner-Mindlin shell derived from the continuum theory is presented. The geometry is described by NURBS surfaces. The kinematic description of the employed shell theory requires the interpolation of the director vector and of a local basis system. Hence, the definition of nodal basis systems at the control points is necessary for the proposed formulation. The control points are in general not located on the shell reference surface and thus, several choices for the nodal values are possible. The proposed new method uses the higher continuity of the geometrical description to calculate nodal basis system and director vectors which lead to geometrical exact interpolated values thereof. Thus, the initial director vector coincides with the normal vector even for the coarsest mesh. In addition to that a more accurate interpolation of the current director and its variation is proposed. Instead of the interpolation of nodal director vectors the new approach interpolates nodal rotations. Account is taken for the discrepancy between interpolated basis systems and the individual nodal basis systems with an additional transformation. The exact evaluation of the initial director vector along with the interpolation of the nodal rotations lead to a shell formulation which yields precise results even for coarse meshes. The convergence behavior is shown to be correct for k-refinement allowing the use of coarse meshes with high orders of NURBS basis functions. This is potentially advantageous for applications with high numerical effort per integration point. The geometrically nonlinear formulation accounts for large rotations. The consistent tangent matrix is derived. Various standard benchmark examples show the superior accuracy of the presented shell formulation. A new benchmark designed to test the convergence behavior for free form surfaces is presented. Despite the higher numerical effort per integration point the improved accuracy yields considerable savings in computation cost for a predefined error bound.

By natural or man-made disasters, the evacuation of a whole region or city may become necessary. Apart from private traffic, the evacuation from collection points to secure shelters outside the endangered region will be realized by a bus fleet made available by emergency relief. The arising Bus Evacuation Problem (BEP) is a vehicle scheduling problem, in which a given number of evacuees needs to be transported from a set of collection points to a set of capacitated shelters, minimizing the total evacuation time, i.e., the time needed until the last person is brought to safety.
In this paper we consider an extended version of the BEP, the Robust Bus Evacuation Problem (RBEP), in which the exact numbers of evacuees are not known, but may stem from a set of probable scenarios. However, after a given reckoning time, this uncertainty is eliminated and planners are given exact figures. The problem is to decide for each bus, if it is better to send it right away -- using uncertain numbers of evacuees -- or to wait until the numbers become known.
We present a mixed-integer linear programming formulation for the RBEP and discuss solution approaches; in particular, we present a tabu search framework for finding heuristic solutions of acceptable quality within short computation time. In computational experiments using both randomly generated instances and the real-world scenario of evacuating the city of Kaiserslautern, we compare our solution approaches.

It is often helpful to compute the intrinsic volumes of a set of which only a pixel image is observed. A computational efficient approach, which is suggested by several authors and used in practice, is to approximate the intrinsic volumes by a linear functional of the pixel configuration histogram. Here we want to examine, whether there is an optimal way of choosing this linear functional, where we will use a quite natural optimality criterion that has already been applied successfully for the estimation of the surface area. We will see that for intrinsic volumes other than volume or surface area this optimality criterion cannot be used, since estimators which ignore the data and return constant values are optimal w.r.t. this criterion. This shows that one has to be very careful, when intrinsic volumes are approximated by a linear functional of the pixel configuration histogram.

This papers deals with the minimization of seminorms \(\|L\cdot\|\) on \(\mathbb R^n\) under the constraint of a bounded I-divergence \(D(b,H\cdot)\). The I-divergence is also known as Kullback-Leibler divergence and appears in many models in imaging science, in particular when dealing with Poisson data. Typically, \(H\) represents here, e.g., a linear blur operator and \(L\) is some discrete derivative operator. Our preference for the constrained approach over
the corresponding penalized version is based on the fact that the I-divergence of data
corrupted, e.g., by Poisson noise or multiplicative Gamma noise can be estimated by statistical methods. Our minimization technique rests upon relations between constrained and penalized convex problems and resembles the idea of Morozov's discrepancy principle.
More precisely, we propose first-order primal-dual algorithms which reduce the problem to the solution of certain proximal minimization problems in each iteration step. The most interesting of these proximal minimization problems is an I-divergence constrained least squares problem. We solve this problem by connecting it to the corresponding I-divergence
penalized least squares problem with an appropriately chosen regularization parameter. Therefore, our algorithm produces not only a sequence of vectors which converges to a minimizer of the constrained problem but also a sequence of parameters which convergences to a regularization parameter so that the penalized problem has the same solution as our constrained one. In other words, the solution of this penalized problem fulfills the I-divergence constraint. We provide the proofs which are necessary to understand
our approach and demonstrate the performance of our algorithms for different
image restoration examples.

This paper considers supervised multi-class image segmentation: from a labeled set of
pixels in one image, we learn the segmentation and apply it to the rest of the image or to other similar images. We study approaches with p-Laplacians, (vector-valued) Reproducing Kernel Hilbert
Spaces (RKHSs) and combinations of both. In all approaches we construct segment membership
vectors. In the p-Laplacian model the segment membership vectors have to fulfill a certain probability simplex constraint. Interestingly, we could prove that this is not really a constraint in the case p=2 but is automatically fulfilled. While the 2-Laplacian model gives a good general segmentation, the case of the 1-Laplacian tends to neglect smaller segments. The RKHS approach has
the benefit of fast computation. This direction is motivated by image colorization, where a given
dab of color is extended to a nearby region of similar features or to another image. The connection
between colorization and multi-class segmentation is explored in this paper with an application to
medical image segmentation. We further consider an improvement using a combined method. Each
model is carefully considered with numerical experiments for validation, followed by medical image
segmentation at the end.

In this paper we investigate the asymptotic behaviour of the parallel volume
of fixed non-convex bodies in Minkowski spaces as the distance \(r\) tends to infinity.
We will show that the difference of the parallel volume of the convex hull of a
body and the parallel volume of the body itself can at most have order \(r^{d-2}\) in a \(d\)-dimensional space. Then we will show that in Euclidean spaces this difference can at most have order \(r^{d-3}\). These results have several applications, e.g. we will use
them to compute the derivative of \(f_\mu(rK)\) in \(r = 0\), where \(f_\mu\) is the Wills functional
or a similar functional, \(K\) is a body and \(rK\) is the Minkowski-product of \(r\) and \(K\). Finally we present applications concerning Brownian paths and Boolean models and derive new proofs for formulae for intrinsic volumes.

Recently convex optimization models were successfully applied for solving various problems in image analysis and restoration. In this paper, we are interested in relations between convex constrained optimization problems of the form \(min\{\Phi(x)\) subject to \(\Psi(x)\le\tau\}\) and their non-constrained, penalized counterparts \(min\{\Phi(x)+\lambda\Psi(x)\}\). We start with general considerations of the topic and provide a novel proof which ensures that a solution of the constrained problem with given \(\tau\) is also a solution of the on-constrained problem for a certain \(\lambda\). Then we deal with the special setting that \(\Psi\) is a semi-norm and \(\Phi=\phi(Hx)\), where \(H\) is a linear, not necessarily invertible operator and \(\phi\) is essentially smooth and strictly convex. In this case we can prove via the dual problems that there exists a bijective function which maps \(\tau\) from a certain interval to \(\lambda\) such that the solutions of the constrained problem coincide with those of the non-constrained problem if and only if \(\tau\) and \(\lambda\) are in the graph of this function. We illustrate the relation between \(\tau\) and \(\lambda\) by various problems arising in image processing. In particular, we demonstrate the performance of the constrained model in restoration tasks of images corrupted by Poisson noise and in inpainting models with constrained nuclear norm. Such models can be useful if we have a priori knowledge on the image rather than on the noise level.