### Refine

#### Document Type

- Preprint (22) (remove)

#### Has Fulltext

- yes (22) (remove)

#### Keywords

#### Faculty / Organisational entity

- Fachbereich Mathematik (19)
- Fraunhofer (ITWM) (3)

An asymptotic preserving numerical scheme (with respect to diffusion scalings) for a linear transport equation is investigated. The scheme is adopted from a class of recently developped schemes. Stability is proven uniformly in the mean free path under a CFL type condition turning into a parabolic CFL condition in the diffusion limit.

Discretizations for the Incompressible Navier-Stokes Equations based on the Lattice Boltzmann Method
(1999)

A discrete velocity model with spatial and velocity discretization based on a lattice Boltzmann method is considered in the low Mach number limit. A uniform numerical scheme for this model is investigated. In the limit, the scheme reduces to a finite difference scheme for the incompressible Navier-Stokes equation which is a projection method with a second order spatial discretization on a regular grid. The discretization is analyzed and the method is compared to Chorin's original spatial discretization. Numerical results supporting the analytical statements are presented.

In this paper we present a domain decomposition approach for the coupling of Boltzmann and Euler equations. Particle methods are used for both equations. This leads to a simple implementation of the coupling procedure and to natural interface conditions between the two domains. Adaptive time and space discretizations and a direct coupling procedure leads to considerable gains in CPU time compared to a solution of the full Boltzmann equation. Several test cases involving a large range of Knudsen numbers are numerically investigated.

An asymptotic-induced scheme for nonstationary transport equations with thediffusion scaling is developed. The scheme works uniformly for all ranges ofmean free paths. It is based on the asymptotic analysis of the diffusion limit ofthe transport equation. A theoretical investigation of the behaviour of thescheme in the diffusion limit is given and an approximation property is proven.Moreover, numerical results for different physical situations are shown and atheuniform convergence of the scheme is established numerically.

In the paper we discuss the transition from kinetic theory to macroscopic fluid equations, where the macroscopic equations are defined as aymptotic limits of a kinetic equation. This relation can be used to derive computationally efficient domain decomposition schemes for the simulaion of rarefied gas flows close to the continuum limit. Moreover, we present some basic ideas for the derivation of kinetic induced numerical schemes for macroscopic equations, namely kinetic schemes for general conservation laws as well as Lattice-Boltzmann methods for the incompressible Navier-Stokes equations.

This paper deals with domain decomposition methods for kinetic and drift diffusion semiconductor equations. In particular accurate coupling conditions at the interface between the kinetic and drift diffusion domain are given. The cases of slight and strong nonequilibrium situations at the interface are considered and some numerical examples are shown.

A way to derive consistently kinetic models for vehicular traffic from microscopic follow the leader models is presented. The obtained class of kinetic equations is investigated. Explicit examples for kinetic models are developed with a particular emphasis on obtaining models, that give realistic results. For space homogeneous traffic flow situations numerical examples are given including stationary distributions and fundamental diagrams.

Linear half-space problems can be used to solve domain decomposition problems between Boltzmann and aerodynamic equations. A new fast numerical method computing the asymptotic states and outgoing distributions for a linearized BGK half-space problem is presented. Relations with the so-called variational methods are discussed. In particular, we stress the connection between these methods and Chapman-Enskog type expansions.