### Refine

#### Year of publication

- 2010 (4) (remove)

#### Document Type

- Preprint (4) (remove)

#### Has Fulltext

- yes (4) (remove)

#### Keywords

- Combinatorial optimization (1)
- Poisson regression (1)
- Radiative heat transfer (1)
- SPn-approximation (1)
- bottleneck (1)
- combinatorial optimization (1)
- count data (1)
- integer GARCH (1)
- integer-valued time series (1)
- k-max (1)

Laser-induced thermotherapy (LITT) is an established minimally invasive percutaneous technique of tumor ablation. Nevertheless, there is a need to predict the effect of laser applications and optimizing irradiation planning in LITT. Optical attributes (absorption, scattering) change due to thermal denaturation. The work presents the possibility to identify these temperature dependent parameters from given temperature measurements via an optimal control problem. The solvability of the optimal control problem is analyzed and results of successful implementations are shown.

We consider multiple objective combinatiorial optimization problems in which the first objective is of arbitrary type and the remaining objectives are either bottleneck or k-max objective functions. While the objective value of a bottleneck objective is determined by the largest cost value of any element in a feasible solution, the kth-largest element defines the objective value of the k-max objective. An efficient solution approach for the generation of the complete nondominated set is developed which is independent of the specific combinatiorial problem at hand. This implies a polynomial time algorithm for several important problem classes like shortest paths, spanning tree, and assignment problems with bottleneck objectives which are known to be NP-hard in the general multiple objective case.

We introduce a class of models for time series of counts which include INGARCH-type models as well as log linear models for conditionally Poisson distributed data. For those processes, we formulate simple conditions for stationarity and weak dependence with a geometric rate. The coupling argument used in the proof serves as a role model for a similar treatment of integer-valued time series models based on other types of thinning operations.

Universal Shortest Paths
(2010)

We introduce the universal shortest path problem (Univ-SPP) which generalizes both - classical and new - shortest path problems. Starting with the definition of the even more general universal combinatorial optimization problem (Univ-COP), we show that a variety of objective functions for general combinatorial problems can be modeled if all feasible solutions have the same cardinality. Since this assumption is, in general, not satisfied when considering shortest paths, we give two alternative definitions for Univ-SPP, one based on a sequence of cardinality contrained subproblems, the other using an auxiliary construction to establish uniform length for all paths between source and sink. Both alternatives are shown to be (strongly) NP-hard and they can be formulated as quadratic integer or mixed integer linear programs. On graphs with specific assumptions on edge costs and path lengths, the second version of Univ-SPP can be solved as classical sum shortest path problem.