### Refine

#### Year of publication

- 1992 (20) (remove)

#### Document Type

- Preprint (20) (remove)

#### Has Fulltext

- yes (20) (remove)

#### Keywords

#### Faculty / Organisational entity

On the Mróz Model
(1992)

We consider a transmission boundary-value problem for the time-harmonic Maxwell equations neglecting displacement currents. The usual transmission conditions, which require the continuity of the tangential components of the electric and magnetic fields across boundaries are slightly modified. For this new problem we show that the uniqueness of the solution depends on the topological properties of the domains under consideration. Finally we obtain existence results by using a boundary integral equation approach.

We consider a transmission boundary-value problem for the time-harmonic Maxwell equations without displacement currents. As transmission conditions we use the continuity of the tangential parts of the magnetic field H and the continuity of the normal components of the magnetization B=müH. This problem, which is posed over all IR3, is then restricted to a bounded domain by introducing artificial boundary conditions. We present uniqueness and existence proofs for this problem using an integral equation approach and compare the results with those obtained in the unbounded case.

We consider two transmission boundary-value problems for the time-harmonic Maxwell equations without displacement currents. For the first problem we use the continuity of the tangential parts of the electric and magnetic fields across material discontinuities as transmission conditions. In the second case the continuity of the tangential components of the electric field E is replaced by the continuity of the normal component of the magnetization B=müH. For this problem existence of solutions is already shown in [6]. If the domains under consideration are not simply connected the solution is not unique. In this paper, we improve the regularity results obtained in [6] and then prove existence and uniqueness theorems for the first problem by extracting its solution out of the set of all solutions of the second problem. Thus we establish a connection between the solutions corresponding to the different transmission boundary conditions.

In this paper noises and disturbances are treated as distributions of some general class. The problem of sensitivity minimization is considered. A design procedure for the construction of Luenberger observers which estimate the state of a system with a given rate of accuracy has been proposed. The design procedure is applied to identify the first derivatives of an oscillating signal. The constraints on a noise and on a sampling which are necessary to estimate the derivatives to a given accuracy have been obtained.

A multiparameter, polynomial feedback strategy is introduced to solve the universal adapative tracking problem for a class of multivariable minimum phase system and reference signals generated by a known linear time-invariant differential equation. For 2-input, 2-output, minimum phase systems (A,B,C) with det(CB)0, a different polynomial tracking controller is given which does not invoke a spectrum unmixing set.

Several topological necessary conditions of smooth stabilization in the large have been obtained. In particular, if a smooth single-input nonlinear system is smoothly stabilizable in the large at some point of a connected component of equilibria set, then the connected component is to be an unknoted, unbounded curve.