### Refine

#### Document Type

- Preprint (22) (remove)

#### Has Fulltext

- yes (22) (remove)

#### Keywords

#### Faculty / Organisational entity

- Fachbereich Mathematik (19)
- Fraunhofer (ITWM) (3)

An asymptotic preserving numerical scheme (with respect to diffusion scalings) for a linear transport equation is investigated. The scheme is adopted from a class of recently developped schemes. Stability is proven uniformly in the mean free path under a CFL type condition turning into a parabolic CFL condition in the diffusion limit.

In the paper we discuss the transition from kinetic theory to macroscopic fluid equations, where the macroscopic equations are defined as aymptotic limits of a kinetic equation. This relation can be used to derive computationally efficient domain decomposition schemes for the simulaion of rarefied gas flows close to the continuum limit. Moreover, we present some basic ideas for the derivation of kinetic induced numerical schemes for macroscopic equations, namely kinetic schemes for general conservation laws as well as Lattice-Boltzmann methods for the incompressible Navier-Stokes equations.

Discretizations for the Incompressible Navier-Stokes Equations based on the Lattice Boltzmann Method
(1999)

A discrete velocity model with spatial and velocity discretization based on a lattice Boltzmann method is considered in the low Mach number limit. A uniform numerical scheme for this model is investigated. In the limit, the scheme reduces to a finite difference scheme for the incompressible Navier-Stokes equation which is a projection method with a second order spatial discretization on a regular grid. The discretization is analyzed and the method is compared to Chorin's original spatial discretization. Numerical results supporting the analytical statements are presented.

In the present paper multilane models for vehicular traffic are considered. A microscopic multilane model based on reaction thresholds is developed. Based on this model an Enskog like kinetic model is developed. In particular, care is taken to incorporate the correlations between the vehicles. From the kinetic model a fluid dynamic model is derived. The macroscopic coefficients are deduced from the underlying kinetic model. Numerical simulations are presented for all three levels of description in [10]. Moreover, a comparison of the results is given there.

In this paper the work presented in [6] is continued. The present paper contains detailed numerical investigations of the models developed there. A numerical method to treat the kinetic equations obtained in [6] are presented and results of the simulations are shown. Moreover, the stochastic correlation model used in [6] is described and investigated in more detail.

In this paper domain decomposition methods for radiative transfer problems including conductive heat transfer are treated. The paper focuses on semi-transparent materials, like glass, and the associated conditions at the interface between the materials. Using asymptotic analysis we derive conditions for the coupling of the radiative transfer equations and a diffusion approximation. Several test cases are treated and a problem appearing in glass manufacturing processes is computed. The results clearly show the advantages of a domain decomposition approach. Accuracy equivalent to the solution of the global radiative transfer solution is achieved, whereas computation time is strongly reduced.

In this paper we present a domain decomposition approach for the coupling of Boltzmann and Euler equations. Particle methods are used for both equations. This leads to a simple implementation of the coupling procedure and to natural interface conditions between the two domains. Adaptive time and space discretizations and a direct coupling procedure leads to considerable gains in CPU time compared to a solution of the full Boltzmann equation. Several test cases involving a large range of Knudsen numbers are numerically investigated.

In this paper the kinetic model for vehicular traffic developed in [3,4] is considered and theoretical results for the space homogeneous kinetic equation are presented. Existence and uniqueness results for the time dependent equation are stated. An investigation of the stationary equation leads to a boundary value problem for an ordinary differential equation. Existence of the solution and some properties are proved. A numerical investigation of the stationary equation is included.

An asymptotic-induced scheme for nonstationary transport equations with thediffusion scaling is developed. The scheme works uniformly for all ranges ofmean free paths. It is based on the asymptotic analysis of the diffusion limit ofthe transport equation. A theoretical investigation of the behaviour of thescheme in the diffusion limit is given and an approximation property is proven.Moreover, numerical results for different physical situations are shown and atheuniform convergence of the scheme is established numerically.