### Refine

#### Document Type

- Doctoral Thesis (5) (remove)

#### Language

- English (5) (remove)

#### Keywords

- Finanzmathematik (5) (remove)

This thesis is devoted to deal with the stochastic optimization problems in various situations with the aid of the Martingale method. Chapter 2 discusses the Martingale method and its applications to the basic optimization problems, which are well addressed in the literature (for example, [15], [23] and [24]). In Chapter 3, we study the problem of maximizing expected utility of real terminal wealth in the presence of an index bond. Chapter 4, which is a modification of the original research paper joint with Korn and Ewald [39], investigates an optimization problem faced by a DC pension fund manager under inflationary risk. Although the problem is addressed in the context of a pension fund, it presents a way of how to deal with the optimization problem, in the case there is a (positive) endowment. In Chapter 5, we turn to a situation where the additional income, other than the income from returns on investment, is gained by supplying labor. Chapter 6 concerns a situation where the market considered is incomplete. A trick of completing an incomplete market is presented there. The general theory which supports the discussion followed is summarized in the first chapter.

In this thesis we explicitly solve several portfolio optimization problems in a very realistic setting. The fundamental assumptions on the market setting are motivated by practical experience and the resulting optimal strategies are challenged in numerical simulations.
We consider an investor who wants to maximize expected utility of terminal wealth by trading in a high-dimensional financial market with one riskless asset and several stocks.
The stock returns are driven by a Brownian motion and their drift is modelled by a Gaussian random variable. We consider a partial information setting, where the drift is unknown to the investor and has to be estimated from the observable stock prices in addition to some analyst’s opinion as proposed in [CLMZ06]. The best estimate given these observations is the well known Kalman-Bucy-Filter. We then consider an innovations process to transform the partial information setting into a market with complete information and an observable Gaussian drift process.
The investor is restricted to portfolio strategies satisfying several convex constraints.
These constraints can be due to legal restrictions, due to fund design or due to client's specifications. We cover in particular no-short-selling and no-borrowing constraints.
One popular approach to constrained portfolio optimization is the convex duality approach of Cvitanic and Karatzas. In [CK92] they introduce auxiliary stock markets with shifted market parameters and obtain a dual problem to the original portfolio optimization problem that can be better solvable than the primal problem.
Hence we consider this duality approach and using stochastic control methods we first solve the dual problems in the cases of logarithmic and power utility.
Here we apply a reverse separation approach in order to obtain areas where the corresponding Hamilton-Jacobi-Bellman differential equation can be solved. It turns out that these areas have a straightforward interpretation in terms of the resulting portfolio strategy. The areas differ between active and passive stocks, where active stocks are invested in, while passive stocks are not.
Afterwards we solve the auxiliary market given the optimal dual processes in a more general setting, allowing for various market settings and various dual processes.
We obtain explicit analytical formulas for the optimal portfolio policies and provide an algorithm that determines the correct formula for the optimal strategy in any case.
We also show optimality of our resulting portfolio strategies in different verification theorems.
Subsequently we challenge our theoretical results in a historical and an artificial simulation that are even closer to the real world market than the setting we used to derive our theoretical results. However, we still obtain compelling results indicating that our optimal strategies can outperform any benchmark in a real market in general.

This thesis deals with 3 important aspects of optimal investment in real-world financial markets: taxes, crashes, and illiquidity. An introductory chapter reviews the portfolio problem in its historical context and motivates the theme of this work: We extend the standard modelling framework to include specific real-world features and evaluate their significance. In the first chapter, we analyze the optimal portfolio problem with capital gains taxes, assuming that taxes are deferred until the end of the investment horizon. The problem is solved with the help of a modification of the classical martingale method. The second chapter is concerned with optimal asset allocation under the threat of a financial market crash. The investor takes a worst-case attitude towards the crash, so her investment objective is to be best off in the most adverse crash scenario. We first survey the existing literature on the worst-case approach to optimal investment and then present in detail the novel martingale approach to worst-case portfolio optimization. The first part of this chapter is based on joint work with Ralf Korn. In the last chapter, we investigate optimal portfolio decisions in the presence of illiquidity. Illiquidity is understood as a period in which it is impossible to trade on financial markets. We use dynamic programming techniques in combination with abstract convergence results to solve the corresponding optimal investment problem. This chapter is based on joint work with Holger Kraft and Peter Diesinger.

This thesis deals with the application of binomial option pricing in a single-asset Black-Scholes market and its extension to multi-dimensional situations. Although the binomial approach is, in principle, an efficient method for lower dimensional valuation problems, there are at least two main problems regarding its application: Firstly, traded options often exhibit discontinuities, so that the Berry- Esséen inequality is in general tight; i.e. conventional tree methods converge no faster than with order 1/sqrt(N). Furthermore, they suffer from an irregular convergence behaviour that impedes the possibility to achieve a higher order of convergence via extrapolation methods. Secondly, in multi-asset markets conventional tree construction methods cannot ensure well-defined transition probabilities for arbitrary correlation structures between the assets. As a major aim of this thesis, we present two approaches to get binomial trees into shape in order to overcome the main problems in applications; the optimal drift model for the valuation of single-asset options and the decoupling approach to multi-dimensional option pricing. The new valuation methods are embedded into a self-contained survey of binomial option pricing, which focuses on the convergence behaviour of binomial trees. The optimal drift model is a new one-dimensional binomial scheme that can lead to convergence of order o(1/N) by exploiting the specific structure of the valuation problem under consideration. As a consequence, it has the potential to outperform benchmark algorithms. The decoupling approach is presented as a universal construction method for multi-dimensional trees. The corresponding trees are well-defined for an arbitrary correlation structure of the underlying assets. In addition, they yield a more regular convergence behaviour. In fact, the sawtooth effect can even vanish completely, so that extrapolation can be applied.

This thesis deals with the solution of special problems arising in financial engineering or financial mathematics. The main focus lies on commodity indices. Chapter 1 addresses the important issue for the financial engineering practice of developing well-suited models for certain assets (here: commodity indices). Descriptive analysis of the Dow Jones-UBS commodity index compared to the Standard & Poor 500 stock index provides us with first insights of some features of the corresponding distributions. Statistical tests of normality and mean reversion then helps us in setting up a model for commodity indices. Additionally, chapter 1 encompasses a thorough introduction to commodity investment, history of commodities trading and the most important derivatives, namely futures and European options on futures. Chapter 2 proposes a model for commodity indices and derives fair prices for the most important derivatives in the commodity markets. It is a Heston model supplemented with a stochastic convenience yield. The Heston model belongs to the model class of stochastic volatility models and is currently widely used in stock markets. For the application in the commodity markets the stochastic convenience yield is included in the drift of the instantaneous spot return process. Motivated by the results of chapter 1 it seems reasonable to model the convenience yield by a mean reverting Ornstein-Uhlenbeck process. Since trading desks only apply and consider models with closed form solutions for options I derive such formulas for commodity futures by solving the corresponding partial differential equation. Additionally, semi-closed form formulas for European options on futures are determined. The Cauchy problem with respect to these options is more challenging than the first one. A solution can be provided. Unlike equities, which typically entitle the holder to a continuing stake in a corporation, commodity futures contracts normally specify a certain date for the delivery of the underlying physical commodity. In order to avoid the delivery process and maintain a futures position, nearby contracts must be sold and contracts that have not yet reached the delivery period must be purchased (so called rolling). Optimal trading days for selling and buying futures are determined by applying statistical tests for stochastic dominance. Besides the optimization of the rolling procedure for commodity futures we dedicate ourselves in chapter 3 with the optimization of the weightings of the commodity futures that make up the index. To this end, I apply the Markowitz approach or mean-variance optimization. The mean-variance optimization penalizes up-side and down-side risk equally, whereas most investors do not mind up-side risk. To overcome this, I consider in the next step other risk measures, namely Value-at-Risk and Conditional Value-at-Risk. The Conditional Value-at-Risk is generalized to discontinuous cumulative distribution functions of the loss. For continuous loss distributions, the Conditional Value-at-Risk at a given confidence level is defined as the expected loss exceeding the Value-at-Risk. Loss distributions associated with finite sampling or scenario modeling are, however, discontinuous. Various risk measures involving discontinuous loss distributions shall be introduced and compared. I then apply the theoretical results to the field of portfolio optimization with commodity indices. Furthermore, I uncover graphically the behavior of these risk measures. For this purpose, I consider the risk measures as a function of the confidence level. Based on a special discrete loss distribution, the graphs demonstrate the different properties of these risk measures. The goal of the first section of chapter 4 is to apply the mathematical concept of excursions for the creation of optimal highly automated or algorithmic trading strategies. The idea is to consider the gain of the strategy and the excursion time it takes to realize the gain. In this section I calculate formulas for the Ornstein-Uhlenbeck process. I show that the corresponding formulas can be calculated quite fast since the only function appearing in the formulas is the so called imaginary error function. This function is already implemented in many programs, such as in Maple. My main contribution of this topic is the optimization of the trading strategy for Ornstein-Uhlenbeck processes via the Banach fixed-point theorem. The second section of chapter 4 deals with statistical arbitrage strategies, a long horizon trading opportunity that generates a riskless profit. The results of this section provide an investor with a tool to investigate empirically if some strategies (for example momentum strategies) constitute statistical arbitrage opportunities or not.