### Refine

#### Year of publication

- 2002 (18) (remove)

#### Document Type

- Doctoral Thesis (18) (remove)

#### Language

- English (18) (remove)

#### Keywords

- Adaptive Antennen (1)
- Anti-diffusion (1)
- Antidiffusion (1)
- Chromatin (1)
- Chromatographiesäule (1)
- Consistencyanalysis (1)
- DNA adducts (1)
- Diffusion (1)
- Dissertation (1)
- Efficiency (1)

#### Faculty / Organisational entity

In the last decade, injection molding of long-fiber reinforced thermoplastics
(LFT) has been established as a low-cost, high volume technique for manufacturing
parts with complex shape without any post-treatment [1–3]. Applications
are mainly found in the automotive industry with a volume annually
growing by 10% to 15% [4].
While first applications were based on polyamide (PA6 and PA6.6), the market
share of glass fiber reinforced polypropylene (PP) is growing due to cost savings
and ease of processing. With the use of polypropylene, different processing
techniques such as gas-assisted injection molding [5] or injection compression
molding [6] have emerged in addition to injection molding [7, 8].
In order to overcome or justify higher materials costs when compared to short
fiber reinforced thermoplastics, the manufacturing techniques for LFT pellets
with fiber length greater than 10mm have evolved starting from pultrusion by
improving impregnation and throughput [9] or by direct addition of fiber strands
in the mold [10–12].
The benefit of long glass fiber reinforcement either in PP or PA is mainly due
to the enhanced resistance to fiber pull-out resulting in an increase in impact
properties and strength [13–19], even at low temperature levels [20]. Creep
and fatigue resistance are also substantially improved [21, 22].
The performance of fiber reinforced thermoplastics manufactured by injection
molding strongly depends on the flow-induced microstructure which is
driven by materials composition, processing conditions and part geometry.
The anisotropic microstructure is characterized by fiber fraction and dispersion,
fiber length and fiber orientation.
Facing the complexity of this processing technique, simulation becomes a precious
tool already in the concept phase for parts manufactured by injection
molding. Process simulation supports decisions with respect to choice of concepts
and materials. The part design is determined in terms of mold filling
including location of gates, vents and weld lines. Tool design requires the
determination of melt feeding, logistics and mold heating. Subsequently, performance
including prediction of shrinkage and warpage as well as structural
analysis is evaluated [23].
While simulation based on two-dimensional representation of three-dimensional
part geometry has been extensively used during the last two decades, the
complexity of the parts as well as the trend towards solid modelling in CAD
and CAE demands the step towards three-dimensional process simulation. The scope of this work is the prediction of flow-induced microstructure during
injection molding of long glass fiber reinforced polypropylene using threedimensional
process simulation. Modelling of the injection molding process in
three dimensions is supported experimentally by rheological characterization
in both shear and extensional flow and by two- and three-dimensional evaluation
of microstructure.
In chapter 2 the fundamentals of rheometry and rheology are presented with
respect to long fiber reinforced thermoplastics. The influence of parameters
on microstructure is described and approaches for modelling the state of microstructure
and its dynamics are discussed.
Chapter 3 introduces a rheometric technique allowing for rheological characterization
of polymer melts at processing conditions as encountered during
manufacturing. Using this rheometer, both shear and extensional viscosity of
long glass fiber reinforced polypropylene are measured with respect to composition
of materials, processing conditions and geometry of the cavity.
Chapter 4 contains the evaluation of microstructure of long glass fiber reinforced
polypropylene in terms of two-dimensional fiber orientation and its dependence
on materials parameters and processing condition. For the evaluation
of three-dimensional microstructure, a technique based on x-ray tomography
is introduced.
In chapter 5, modelling of microstructural dynamics is addressed. One-way
coupling of interactions between fluid and fibers is described macroscopically.
The flow behavior of fibers in the vicinity of cavity walls is evaluated experimentally.
From these observations, a model for treatment of fiber-wall interaction
with respect to numerical simulation is proposed.
Chapter 6 presents the application of three-dimensional simulation of the injection
molding process. Mold filling simulation is performed using a commercial
code while prediction of 3D fiber orientation is based on a proprietary module.
The rheological and thermal properties derived in chapter 3 are tested by
simulation of the experiments and comparison of predicted pressure and temperature
profile versus recorded results. The performance of fiber orientation
prediction is verified using analytical solutions of test examples from literature.
The capability of three-dimensional simulation is demonstrated based on the
simulation of mold filling and prediction of fiber orientation for an automotive
part.

Solid particle erosion is usually undesirable, as it leads to development of cracks and
holes, material removal and other degradation mechanisms that as final
consequence reduce the durability of the structure imposed to erosion. The main aim
of this study was to characterise the erosion behaviour of polymers and polymer
composites, to understand the nature and the mechanisms of the material removal
and to suggest modifications and protective strategies for the effective reduction of
the material removal due to erosion.
In polymers, the effects of morphology, mechanical-, thermomechanical, and fracture
mechanical- properties were discussed. It was established that there is no general
rule for high resistance to erosive wear. Because of the different erosive wear
mechanisms that can take place, wear resistance can be achieved by more than one
type of materials. Difficulties with materials optimisation for wear reduction arise from
the fact that a material can show different behaviour depending on the impact angle
and the experimental conditions. Effects of polymer modification through mixing or
blending with elastomers and inclusion of nanoparticles were also discussed.
Toughness modification of epoxy resin with hygrothermally decomposed polyesterurethane
can be favourable for the erosion resistance. This type of modification
changes also the crosslinking characteristics of the modified EP and it was
established the crosslink density along with fracture energy are decisive parameters
for the erosion response. Melt blending of thermoplastic polymers with functionalised
rubbers on the other hand, can also have a positive influence whereas inclusion of
nanoparticles deteriorate the erosion resistance at low oblique impact angles (30°).
The effects of fibre length, orientation, fibre/matrix adhesion, stacking sequence,
number, position and existence of interleaves were studied in polymer composites.
Linear and inverse rules of mixture were applied in order to predict the erosion rate of
a composite system as a function of the erosion rate of its constituents and their
relative content. Best results were generally delivered with the inverse rule of mixture
approach.
A semi-empirical model, proposed to describe the property degradation and damage
growth characteristics and to predict residual properties after single impact, was
applied for the case of solid particle erosion. Theoretical predictions and experimental
results were in very good agreement.
Strahlerosionsverschleiß (Erosion) entsteht beim Auftreffen von festen Partikel
auf Oberflächen und zeichnet sich üblicherweise durch einen Materialabtrag aus, der
neben der Partikelgeschwindigkeit und dem Auftreffwinkel stark vom jeweiligen
Werkstoff abhängt. In den letzten Jahren ist die Anwendung von Polymeren und
Verbundwerkstoffen anstelle der traditionellen Materialien stark angestiegen.
Polymere und Polymer-Verbundwerkstoffe weisen eine relativ hohe Erosionsrate
(ER) auf, was die potenzielle Anwendung dieser Werkstoffe unter erosiven
Umgebungsbedingungen erheblich einschränkt.
Untersuchungen des Erosionsverhaltens anhand ausgewählter Polymere und
Polymer-Verbundwerkstoffe haben gezeigt, dass diese Systeme unterschiedlichen
Verschleißmechnismen folgen, die sehr komplex sind und nicht nur von einer
Werkstoffeigenschaft beeinflusst werden. Anhand der ER kann das
Erosionsverhalten grob in zwei Kategorien eingeteilt werden: sprödes und duktiles
Erosionsverhalten. Das spröde Erosionsverhalten zeigt eine maximale ER bei 90°,
während das Maximum bei dem duktilen Verhalten bei 30° liegt. Ob ein Material das
eine oder das andere Erosionsverhalten aufweist, ist nicht nur von seinen
Eigenschaften, sondern auch von den jeweiligen Prüfparametern abhängig.
Das Ziel dieser Forschungsarbeit war, das grundsätzliche Verhalten von
Polymeren und Verbundwerkstoffen unter dem Einfluss von Erosion zu
charakterisieren, die verschiedenen Verschleißmechanismen zu erkennen und die
maßgeblichen Materialeigenschaften und Kennwerte zu erfassen, um Anwendungen
dieser Werkstoffe unter Erosionsbedingungen zu ermöglichen bzw. zu verbessern.
An einer exemplarischen Auswahl von Polymeren, Elastomeren, modifizierten Polymeren und Faserverbundwerkstoffen wurden die wesentlichen Einflussfaktoren
für die Erosion experimentell bestimmt.
Thermoplastische Polymere und thermoplastische- und vernetzte- Elastomere
Die Versuche, den Erosionswiderstand ausgewählter Polymere (Polyethylene
und Polyurethane) mit verschiedenen Materialeigenschaften zu korrelieren, haben
gezeigt, dass es weder eine klare Abhängigkeit von einzelnen Kenngrößen noch von
Eigenschaftskombinationen gibt. Möglicherweise führt die Bestimmung der
Materialeigenschaften unter den gleichen experimentellen Bedingungen wie bei den Erosionsversuchen zu einer besseren Korrelation zwischen ER und
Materialkenngröße.
Modifiziertes Epoxidharz
Am Beispiel eines modifizierten Epoxidharzes (EP) mit verschiedener
Vernetzungsdichte wurde eine Korrelation zwischen Erosionswiderstand und
Bruchenergie bzw. Erosionswiderstand und Vernetzungsdichte gefunden. Die
Modifizierung erfolgte mit verschiedenen Anteilen von einem hygrothermisch
abgebauten Polyurethan (HD-PUR). Der Zusammenhang zwischen ER und
Vernetzungsparametern steht im Einklang mit der Theorie der Kautschukelastizität.
Modifizierungseffizienz in Duromeren, Thermoplasten und Elastomeren
Des weiteren wurde der Einfluss von Modifizierungen von Polymeren und
Elastomeren untersucht. Mit dem obenerwähnten System (d.h. EP/HD-PUR) läßt sich
auch der Einfluss der Zähigkeitsmodifizierung des Epoxidharzes (EP) auf das
Erosionsverhalten untersuchen. Es wurde gezeigt, dass für HD-PUR Anteile von
mehr als 20 Gew.% diese Modifizierung einen positiven Einfluss auf die
Erosionsbeständigkeit hat. Durch Variation der HD-PUR-Anteile können für dieses
EP Materialeigenschaften, die zwischen den Eigenschaften eines üblichen
Duroplasten und eines weniger elastischen Gummis liegen, erzeugt werden.
Deswegen stellt der modifizierte EP-Harz ein sehr gutes Modellmaterial dar, um den
Einfluss der experimentellen Bedingungen zu studieren, und zu untersuchen, ob
verschiedene Erodenten zu gleichen Erosionsmechanismen führen. Der Übergang
vom duroplastischen zum zähen Verhalten wurde anhand von vier Erodenten
untersucht. Aus den Versuchen ergab sich, dass ein solcher Übergang auftritt, wenn
sehr feine, kantige Partikel (Korund) als Erodenten dienen. Die Partikelgröße und -form ist von entscheidender Bedeutung für die jeweiligen Verschleißmechanismen.
Die Effizienz neuartiger thermoplastischer Elastomere mit einer cokontinuierlichen
Phasenstruktur, bestehend aus thermoplastischem Polyester und
Gummi (funktionalisierter NBR und EPDM Kautschuk), wurde in Bezug auf die
Erosionsbeständigkeit untersucht. Große Anteile von funktionalisiertem Gummi (mehr
als 20 Gew.%) sind vorteilhaft für den Erosionswiderstand. Weiterhin wurde
untersucht, ob sich die herausragende Erosionsbeständigkeit von Polyurethan (PUR)
durch Zugabe von Nanosilikaten eventuell noch steigern läßt. Das Ergebnis war,
dass die Nanopartikel sich vor allem bei einem kleinen Verschleißwinkel (30°) negativ
auswirken. Die schwache Adhäsion zwischen Matrix und Partikeln erleichtert den
Beginn und das Wachsen von Rissen. Dies führt zu einem schnelleren
Materialabtrag von der Materialoberfläche.
Faserverbundwerkstoffe
Ferner wurden Faserverbundwerkstoffe (FVW) mit thermoplastischer und
duromerer Matrix auf ihr Verhalten bei Erosivverschleiß untersucht. Es war von
großem Interesse, den Einfluss von Faserlänge und -orientierung zu untersuchen.
Kurzfaserverstärkte Systeme haben einen besseren Erosionswiderstand als die
unidirektionalen (UD) Systeme. Die Rolle der Faserorientierung kann man nur in
Verbindung mit anderen Parametern, wie Matrixzähigkeit, Faseranteil oder Faser-
Matrix Haftung, berücksichtigen. Am Beispiel von GF/PP Verbunden weisen die
parallel zur Verstreckungsrichtung gestrahlten Systeme den geringsten Widerstand
auf. Andererseits findet bei einem GF/EP System die maximale ER in senkrechter
Richtung statt. Eine Verbesserung der Grenzflächenscherfestigkeit beeinflusst die
Erosionsverschleißrate nachhaltig. Wenn die Haftung der Grenzfläche ausreichend
ist, spielt die Erosionsrichtung eine unbedeutende Rolle für die ER. Weiterhin wurde
gezeigt, dass die Präsenz von zähen Zwischenschichten zu einer deutlichen
Verbesserung des Erosionswiderstands von CF/EP- Verbunden führt.
Eine weitere Aufgabenstellung war es, die Rolle des Faservolumenanteils zu
bestimmen. „Lineare, inverse und modifizierte Mischungsregeln“ wurden
angewendet, und es wurde festgestellt, dass die inversen Mischungsregeln besser
die ER in Abhängigkeit des Faservolumenanteils beschreiben können.
Im Anwendungsbereich von Faserverbundwerkstoffen ist nicht nur die Kenntnis
der ER, sondern auch die Kenntnis der Resteigenschaften erforderlich. Ein
halbempirisches Modell für die Vorhersage des Schlagenergieschwellwertes (Uo) für den Beginn der Festigkeitsabnahme und der Restzugfestigkeit nach einer
Schlagbelastung wurde bei der Untersuchung des Erosionsverschleißes
angewendet. Experimentelle Ergebnisse und theoretische Vorhersagen stimmten
nicht nur für duromere CF/EP-Verbundwerkstoffe, sondern auch für
Verbundwerkstoffe mit einer thermoplastischen Matrix (GF/PP) sehr gut überein.

thesis deals with the investigation of the dynamics of optically excited (hot) electrons in thin and ultra-thin layers. The main interests concern about the time behaviour of the dissipation of energy and momentum of the excited electrons. The relevant relaxation times occur in the femtosecond time region. The two-photon photoemission is known to be an adequate tool in order to analyse such dynamical processes in real-time. This work expands the knowledge in the fields of electron relaxation in ultra-thin silver layers on different substrates, as well as in adsorbate states in a bandgap of a semiconductor. It contributes facts to the comprehension of spin transport through an interface between a metal and a semiconductor. The primary goal was to prove the predicted theory by reducing the observed crystal in at least one direction. One expects a change of the electron relaxation behaviour while altering the crystal’s shape from a 3d bulk to a 2d (ultra-thin) layer. This is due to the fact that below a determined layer thickness, the electron gas transfers to a two-dimensional one. This behaviour could be proven in this work. In an about 3nm thin silver layer on graphite, the hot electrons show a jump to longer relaxation time all over the whole accessible energy range. It is the first time that the temporal evolution of the relaxation of excited electrons could be observed during the transition from a 3d to a 2d system. In order to reduce or even eliminate the influence coming from the substrate, the system of silver on the semiconductor GaAs, which has a bandgap of 1.5eV at the Gamma-point, was investigated. The observations of the relaxation behaviour of hot electron in different ultra-thin silver layers on this semiconductor could show, that at metal-insulator-junctions, plasmons in the silver and in the interface, as well as cascading electrons from higher lying energies, have a huge influence to the dissipation of momentum and energy. This comes mainly from the band bending of the semiconductor, and from the electrons, which are excited in GaAs. The limitation of the silver layer on GaAs in one direction led to the expected generation of quantum well states (QWS) in the bandgap. Those adsorbate states have quantised energy- and momentum values, which are directly connected to the layer thickness and the standing electron wave therein. With the experiments of this work, published values could not only be completed and proved, but it could also be determined the time evolution of such a QWS. It came out that this QWS might only be filled by electrons, which are moving from the lower edge of the conduction band of the semiconductor to the silver and suffer cascading steps there. By means of the system silver on GaAs, and of the known fact that an excitation of electrons in GaAs with circularly polarised light of the energy 1.5eV does produce spin polarised electrons in the conduction band, it became possible to bring a contribution to the hot topic of spin injection. The main target of spin injection is the transfer of spin polarised electrons out of a ferromagnet into a semiconductor, in order to develop spin dependent switches and memories. It could be demonstrated here that spin polarised electrons from GaAs can move through the interface into silver, could be photoemitted from there and their spin was still being detectable. As a third investigation system, ultra-thin silver layers were deposited on the insulator MgO, which has a bandgap of 7.8eV. Also in this system, one could recognize a change in the relaxation time while reducing the dimension of the silver layer from thick to ultra-thin. Additionally, it came out an extreme large relaxation time at a layer thickness of 0.6 – 1.2nm. This time is an order of magnitude longer than at thick films, and this is a consequence of two factors: first, the reduction of the phase space due to the confined electron gas in the z-direction, and second, the slowlier thermalisation of the electron gas due to less accessible scattering partners.

The dissertation is concerned with the numerical solution of Fokker-Planck equations in high dimensions arising in the study of dynamics of polymeric liquids. Traditional methods based on tensor product structure are not applicable in high dimensions for the number of nodes required to yield a fixed accuracy increases exponentially with the dimension; a phenomenon often referred to as the curse of dimension. Particle methods or finite point set methods are known to break the curse of dimension. The Monte Carlo method (MCM) applied to such problems are 1/sqrt(N) accurate, where N is the cardinality of the point set considered, independent of the dimension. Deterministic version of the Monte Carlo method called the quasi Monte Carlo method (QMC) are quite effective in integration problems and accuracy of the order of 1/N can be achieved, up to a logarithmic factor. However, such a replacement cannot be carried over to particle simulations due to the correlation among the quasi-random points. The method proposed by Lecot (C.Lecot and F.E.Khettabi, Quasi-Monte Carlo simulation of diffusion, Journal of Complexity, 15 (1999), pp.342-359) is the only known QMC approach, but it not only leads to large particle numbers but also the proven order of convergence is 1/N^(2s) in dimension s. We modify the method presented there, in such a way that the new method works with reasonable particle numbers even in high dimensions and has better order of convergence. Though the provable order of convergence is 1/sqrt(N), the results show less variance and thus the proposed method still slightly outperforms standard MCM.

Matrix Compression Methods for the Numerical Solution of Radiative Transfer in Scattering Media
(2002)

Radiative transfer in scattering media is usually described by the radiative transfer equation, an integro-differential equation which describes the propagation of the radiative intensity along a ray. The high dimensionality of the equation leads to a very large number of unknowns when discretizing the equation. This is the major difficulty in its numerical solution. In case of isotropic scattering and diffuse boundaries, the radiative transfer equation can be reformulated into a system of integral equations of the second kind, where the position is the only independent variable. By employing the so-called momentum equation, we derive an integral equation, which is also valid in case of linear anisotropic scattering. This equation is very similar to the equation for the isotropic case: no additional unknowns are introduced and the integral operators involved have very similar mapping properties. The discretization of an integral operator leads to a full matrix. Therefore, due to the large dimension of the matrix in practical applcation, it is not feasible to assemble and store the entire matrix. The so-called matrix compression methods circumvent the assembly of the matrix. Instead, the matrix-vector multiplications needed by iterative solvers are performed only approximately, thus, reducing, the computational complexity tremendously. The kernels of the integral equation describing the radiative transfer are very similar to the kernels of the integral equations occuring in the boundary element method. Therefore, with only slight modifications, the matrix compression methods, developed for the latter are readily applicable to the former. As apposed to the boundary element method, the integral kernels for radiative transfer in absorbing and scattering media involve an exponential decay term. We examine how this decay influences the efficiency of the matrix compression methods. Further, a comparison with the discrete ordinate method shows that discretizing the integral equation may lead to reductions in CPU time and to an improved accuracy especially in case of small absorption and scattering coefficients or if local sources are present.

Different aspects of geomagnetic field modelling from satellite data are examined in the framework of modern multiscale approximation. The thesis is mostly concerned with wavelet techniques, i.e. multiscale methods based on certain classes of kernel functions which are able to realize a multiscale analysis of the funtion (data) space under consideration. It is thus possible to break up complicated functions like the geomagnetic field, electric current densities or geopotentials into different pieces and study these pieces separately. Based on a general approach to scalar and vectorial multiscale methods, topics include multiscale denoising, crustal field approximation and downward continuation, wavelet-parametrizations of the magnetic field in Mie-representation as well as multiscale-methods for the analysis of time-dependent spherical vector fields. For each subject the necessary theoretical framework is established and numerical applications examine and illustrate the practical aspects.

The immiscible lattice BGK method for solving the two-phase incompressible Navier-Stokes equations is analysed in great detail. Equivalent moment analysis and local differential geometry are applied to examine how interface motion is determined and how surface tension effects can be included such that consistency to the two-phase incompressible Navier-Stokes equations can be expected. The results obtained from theoretical analysis are verified by numerical experiments. Since the intrinsic interface tracking scheme of immiscible lattice BGK is found to produce unsatisfactory results in two-dimensional simulations several approaches to improving it are discussed but all of them turn out to yield no substantial improvement. Furthermore, the intrinsic interface tracking scheme of immiscible lattice BGK is found to be closely connected to the well-known conservative volume tracking method. This result suggests to couple the conservative volume tracking method for determining interface motion with the Navier-Stokes solver of immiscible lattice BGK. Applied to simple flow fields, this coupled method yields much better results than plain immiscible lattice BGK.

One crucial assumption of continuous financial mathematics is that the portfolio can be rebalanced continuously and that there are no transaction costs. In reality, this of course does not work. On the one hand, continuous rebalancing is impossible, on the other hand, each transaction causes costs which have to be subtracted from the wealth. Therefore, we focus on trading strategies which are based on discrete rebalancing - in random or equidistant times - and where transaction costs are considered. These strategies are considered for various utility functions and are compared with the optimal ones of continuous trading.

In this work the investigation of a (Ti, Al, Si) N system was done. The main point of investigation was to study the possibility of getting the nanocomposite coatings structures by deposition of multilayer films from TiN, AlSiN, . This tries to understand the relation between the mechanical properties (hardness, Young s modulus), and the microstructure (nanocrystalline with individual phases). Particularly special attention was given to the temperature effects on microstructural changes in annealing at 600 °C for the coatings. The surface hardness, elastic modulus, and the multilayers diffusion and compositions were the test tools for the comparison between the different coated samples with and without annealing at 600 °C. To achieve this object a rectangular aluminum vacuum chamber with three unbalanced sputtering magnetrons for the deposition of thin film coatings from different materials was constructed The chamber consists mainly of two chambers, the pre-vacuum chamber to load the workpiece, and the main vacuum chamber where the sputtering deposition of the thin film coatings take place. The workpiece is moving on a car travel on a railway between the two chambers to the position of the magnetrons by step motors. The chambers are divided by a self constructed rectangular gate controlled manually from outside the chamber. The chamber was sealed for vacuum use using glue and screws. Therefore, different types of glue were tested not only for its ability to develop an uniform thin layer in the gap between the aluminum plates to seal the chamber for vacuum use, but also low outgassing rates which made it suitable for vacuum use. A epoxy was able to fulfill this tasks. The evacuation characteristics of the constructed chamber was improved by minimizing the inner surface outgassing rate. Therefore, the throughput outgassing rate test method was used in the comparisons between the selected two aluminum materials (A2017 and A5353) samples short time period (one hour) outgassing rates. Different machining methods and treatments for the inner surface of the vacuum chamber were tested. The machining of the surface of material A (A2017) with ethanol as coolant fluid was able to reduce its outgassing rate a factor of 6 compared with a non-machined sample surface of the same material. The reduction of the surface porous oxide layer on the top of the aluminum surface by the pickling process with HNO3 acid, and the protection of it by producing another passive non-porous oxides layer using anodizing process will protect the surface for longer time and will minimize the outgassing rates even under humid atmosphere The residual gas analyzer (RGA) 6. Summary test shows that more than 85% of the gases inside the test chamber were water vapour (H2O) and the rests are (N2, H2, CO), so liquid nitrogen water vapor trap can enhance the chamber pumping down process. As a result it was possible to construct a chamber that can be pumped down using a turbo molecular pump (450 L/s) to the range of 1x10-6 mbar within one hour of evacuations where the chamber volume is 160 Litters and the inner surface area is 1.6 m2. This is a good base pressure for the process of sputtering deposition of hard thin film coatings. Multilayer thin film coating was deposited to demonstrate that nanostructured thin film within the (Ti, Al, Si) N system could be prepared by reactive magnetron sputtering of multi thin film layers of TiN, AlSiN. The (SNMS) spectrometry of the test samples show that a complete diffusion between the different deposited thin film coating layers in each sample takes place, even at low substrate deposition temperature. The high magnetic flux of the unbalanced magnetrons and the high sputtering power were able to produce a high ion-toatom flux, which give high mobility to the coated atoms. The interactions between the high mobility of the coated atoms and the ion-to-atom flux were sufficient to enhance the diffusion between the different deposited thin layers. It was shown from the XRD patterns for this system that the structure of the formed mixture consists of two phases. One phase is noted as TiN bulk and another detected unknown amorphous phase, which can be SiNx or AlN or a combination of Ti-Al-Si-N. As a result we where able to deposit a nanocomposite coatings by the deposition of multilayers from TiN, AlSiN thin film coatings using the constructed vacuum chamber

Lung cancer, mainly caused by tobacco smoke, is the leading cause of cancer mortality. Large efforts in prevention and cessation have reduced smoking rates in the U.S. and other countries. Nevertheless, since 1990, rates have remained constant and it is believed that most of those currently smoking (~25%) are addicted to nicotine, and therefore are unable to stop smoking. An alternative strategy to reduce lung cancer mortality is the development of chemopreventive mixtures used to reduce cancer risk. Before entering clinical trails, it is crucial to know the efficacy, toxicity and the molecular mechanism by which the active compounds prevent carcinogenesis. 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosonornicotine (NNN) and benzo[a]pyrene (B[a]P) are among the most carcinogenic compounds in tobacco smoke. All have been widely used as model carcinogens and their tumorigenic activities are well established. It is believed that formation of DNA adducts is a crucial step in carcinogenesis. NNK and NNN form 4-hydroxy-1-(3-pyridyl)-1-butanone releasing and methylating adducts, while B[a]P forms B[a]P-tetraol-releasing adducts. Different isothiocyanates (ITCs) are able to prevent NNK-, NNN- or B[a]P-induced tumor formation, but relative little is know about the mechanism of these preventive effects. In this thesis, the influence of different ITCs on adduct formation from NNK plus B[a]P and NNN were evaluated. Using an A/J mouse lung tumor model, it was first shown that the formation of HPB-releasing, O6-mG and B[a]P-tetraol-releasing adducts were not affected when NNK and B[a]P were given individually or in combination, of by gavage. Using the same model, the effects of different mixtures of PEITC and BITC, given by gavage or in the diet, on DNA adduct formation were evaluated. Dietary treatment with phenethyl isothiocyanate (PEITC) or PEITC plus benzyl isothiocyanate (BITC) reduced levels of HPB-releasing adducts by 40*50%. This is consistent with a previously shown 40% inhibition of tumor multiplicity for the same treatment. In the gavage treatments with ITCs it seemed that PEITC reduced HPB-releasing DNA adducts, while levels of BITC counteracted these effects. Levels of O6-mG were minimally affected by any of the treatments. Levels of B[a]P-tetraol releasing adducts were reduced by gavaged PEITC Summary Page XII and BITC, 120 h after the last carcinogen treatment, while dietary treatment had no effects. We then extended our investigation to F-344 rats by using a similar ITC treatment protocol as in the mouse model. NNK was given in the drinking water and B[a]P in diet. Dietary PEITC reduced the formation of HPB-releasing globin and DNA adducts in lung but not in liver, while levels of B[a]P-tetraol-releasing adducts were unaffected. Additionally, the effects of PEITC, 3-phenlypropyl isothiocyanate, and their N-acetylcystein conjugates in diet on adducts from NNN in drinking water were evaluated in rat esophageal DNA and globin. Using a protocol known to inhibit NNNinduced esophageal tumorigenesis, the levels of HPB-releasing adduct levels were unaffected by the ITCs treatment. The observations that dietary PEITC inhibited the formation of HPB-releasing DNA adducts only in mice where the control levels were above 1 fmol/µg DNA and adduct levels in rat lung were reduced to levels seen in liver, lead to the conclusion that in mice and rats, there are at least two activation pathway of NNK. One is PEITC-sensitive and responsible for the high adduct levels in lung and presumably also for higher carcinogenicity of NNK in lung. The other is PEITC-insensitive and responsible for the remaining adduct levels and tumorigenicity. In conclusion, our results demonstrated that the preventive mechanism by which ITCs inhibit carcinogenesis is only in part due to inhibition of DNA adduct formation and that other mechanisms are involved. There is a large body of evidence indicating that induction of apoptosis may be a mechanism by which ITCs prevent tumor formation, but further studies are required.