### Refine

#### Document Type

- Article (18) (remove)

#### Keywords

- theorem proving (2)
- Partial functions (1)
- abstract description (1)
- analogical reasoning (1)
- analogy (1)
- completeness (1)
- conservative extension (1)
- consistency (1)
- frames (1)
- higher order logic (1)

The semantics of everyday language and the semanticsof its naive translation into classical first-order language consider-ably differ. An important discrepancy that is addressed in this paperis about the implicit assumption what exists. For instance, in thecase of universal quantification natural language uses restrictions andpresupposes that these restrictions are non-empty, while in classi-cal logic it is only assumed that the whole universe is non-empty.On the other hand, all constants mentioned in classical logic arepresupposed to exist, while it makes no problems to speak about hy-pothetical objects in everyday language. These problems have beendiscussed in philosophical logic and some adequate many-valuedlogics were developed to model these phenomena much better thanclassical first-order logic can do. An adequate calculus, however, hasnot yet been given. Recent years have seen a thorough investigationof the framework of many-valued truth-functional logics. UnfortuADnately, restricted quantifications are not truth-functional, hence theydo not fit the framework directly. We solve this problem by applyingrecent methods from sorted logics.

Even though it is not very often admitted, partial functionsdo play a significant role in many practical applications of deduction sys-tems. Kleene has already given a semantic account of partial functionsusing a three-valued logic decades ago, but there has not been a satisfact-ory mechanization. Recent years have seen a thorough investigation ofthe framework of many-valued truth-functional logics. However, strongKleene logic, where quantification is restricted and therefore not truth-functional, does not fit the framework directly. We solve this problemby applying recent methods from sorted logics. This paper presents atableau calculus that combines the proper treatment of partial functionswith the efficiency of sorted calculi.

In this paper we generalize the notion of method for proofplanning. While we adopt the general structure of methods introducedby Alan Bundy, we make an essential advancement in that we strictlyseparate the declarative knowledge from the procedural knowledge. Thischange of paradigm not only leads to representations easier to under-stand, it also enables modeling the important activity of formulatingmeta-methods, that is, operators that adapt the declarative part of exist-ing methods to suit novel situations. Thus this change of representationleads to a considerably strengthened planning mechanism.After presenting our declarative approach towards methods we describethe basic proof planning process with these. Then we define the notion ofmeta-method, provide an overview of practical examples and illustratehow meta-methods can be integrated into the planning process.

Extending the planADbased paradigm for auto-mated theorem proving, we developed in previ-ous work a declarative approach towards rep-resenting methods in a proof planning frame-work to support their mechanical modification.This paper presents a detailed study of a classof particular methods, embodying variations ofa mathematical technique called diagonaliza-tion. The purpose of this paper is mainly two-fold. First we demonstrate that typical math-ematical methods can be represented in ourframework in a natural way. Second we illus-trate our philosophy of proof planning: besidesplanning with a fixed repertoire of methods,metaADmethods create new methods by modify-ing existing ones. With the help of three differ-ent diagonalization problems we present an ex-ample trace protocol of the evolution of meth-ods: an initial method is extracted from a par-ticular successful proof. This initial method isthen reformulated for the subsequent problems,and more general methods can be obtained byabstracting existing methods. Finally we comeup with a fairly abstract method capable ofdealing with all the three problems, since it cap-tures the very key idea of diagonalization.

Deduktionssysteme
(1999)

In this paper we are interested in using a firstorder theorem prover to prove theorems thatare formulated in some higher order logic. Tothis end we present translations of higher or-der logics into first order logic with flat sortsand equality and give a sufficient criterion forthe soundness of these translations. In addi-tion translations are introduced that are soundand complete with respect to L. Henkin's gen-eral model semantics. Our higher order logicsare based on a restricted type structure in thesense of A. Church, they have typed functionsymbols and predicate symbols, but no sorts.

We show how to buildup mathematical knowledge bases usingframes. We distinguish three differenttypes of knowledge: axioms, definitions(for introducing concepts like "set" or"group") and theorems (for relating theconcepts). The consistency of such know-ledge bases cannot be proved in gen-eral, but we can restrict the possibilit-ies where inconsistencies may be impor-ted to very few cases, namely to the oc-currence of axioms. Definitions and the-orems should not lead to any inconsisten-cies because definitions form conservativeextensions and theorems are proved to beconsequences.

In most cases higher-order logic is based on the (gamma)-calculus in order to avoid the infinite set of so-called comprehension axioms. However, there is a price to be paid, namelyan undecidable unification algorithm. If we do not use the(gamma) - calculus, but translate higher-order expressions intofirst-order expressions by standard translation techniques, we haveto translate the infinite set of comprehension axioms, too. Ofcourse, in general this is not practicable. Therefore such anapproach requires some restrictions such as the choice of thenecessary axioms by a human user or the restriction to certainproblem classes. This paper will show how the infinite class ofcomprehension axioms can be represented by a finite subclass,so that an automatic translation of finite higher-order prob-lems into finite first-order problems is possible. This trans-lation is sound and complete with respect to a Henkin-stylegeneral model semantics.