### Refine

#### Year of publication

#### Keywords

- Boltzmann Equation (7)
- Numerical Simulation (7)
- Particle Methods (2)
- Rarefied Gas Dynamics (2)
- Boundary Value Problems (1)
- Collision Operator (1)
- Differential Cross-Sections (1)
- Domain Decomposition (1)
- Evolution Equations (1)
- Experimental Data (1)
- Homogeneous Relaxation (1)
- Hybrid Codes (1)
- Kinetic Theory of Gases (1)
- Low-discrepancy sequences (1)
- Monte Carlo method (1)
- Random number generation (1)
- Rarefied Gas Flows (1)
- Rarefied Gsa Dynamics (1)
- Rarefied Polyatomic Gases (1)
- Rayleigh Number (1)
- Shock Wave Problem (1)
- Smoothed Particle Hydrodynamics (1)
- Van Neumann-Kakutani transformation (1)
- asymptotic expansions (1)
- consistency (1)
- inversion method (1)
- mesh-free method (1)
- particle methods (1)
- partition of unity (1)
- rarefied gas flows (1)
- scalar conservation laws (1)
- steady Boltzmann equation (1)
- weak solutions (1)

#### Faculty / Organisational entity

- Fachbereich Mathematik (28)
- Fraunhofer (ITWM) (1)

We give a comparison of various differential cross-section models for a classical polyatomic gas for a homogeneous relaxation problem and the shock wave profiles at Mach numbers 1.71 and 12.9. Besides the standard Borgnakke-Larsen model and its generalizations to an energy dependent coefficient to control the amnount of rotationally elastic and completely inelastic collisions, we discuss some new models recently proposed by the same authors. Moreover, we present numerical algorithms to implement the models in a particle or Monte-Carlo code and compare the numerical shock wave profiles with existing experimental data.

The asymptotic behaviour of a singular-perturbed two-phase Stefan problem due to slow diffusion in one of the two phases is investigated. In the limit the model equations reduce to a one-phase Stefan problem. A boundary layer at the moving interface makes it necessary to use a corrected interface condition obtained from matched asymptotic expansions. The approach is validated by numerical experiments using a front-tracking method.

The paper presents a fast implementation of a constructive method to generate a special class of low-discrepancy sequences which are based on Van Neumann-Kakutani tranformations. Such sequences can be used in various simulation codes where it is necessary to generate a certain number of uniformly distributed random numbers on the unit interval.; From a theoretical point of view the uniformity of a sequence is measured in terms of the discrepancy which is a special distance between a finite set of points and the uniform distribution on the unit interval.; Numerical results are given on the cost efficiency of different generators on different hardware architectures as well as on the corresponding uniformity of the sequences. As an example for the efficient use of low-discrepancy sequences in a complex simulation code results are presented for the simulation of a hypersonic rarefied gas flow.

We derive a new class of particle methods for conservation laws, which are based on numerical flux functions to model the interactions between moving particles. The derivation is similar to that of classical Finite-Volume methods; except that the fixed grid structure in the Finite-Volume method is substituted by so-called mass packets of particles. We give some numerical results on a shock wave solution for Burgers equation as well as the well-known one-dimensional shock tube problem.

The asymptotic analysis of IBVPs for the singularly perturbed parabolic PDE ... in the limit epsilon to zero motivate investigations of certain recursively defined approximative series ("ping-pong expansions"). The recursion formulae rely on operators assigning to a boundary condition at the left or the right boundary a solution of the parabolic PDE. Sufficient conditions for uniform convergence of ping-pong expansions are derived and a detailed analysis for the model problem ... is given.

This paper contains the basic ideas and practical aspects for numerical methods for solving the Boltzmann Equation. The main field of application considered is the reentry of a Space Shuttle in the transition from free molecular flow to continuum flow. The method used will be called Finite Pointset Method (FPM) approximating the solution by finite sets of particles in a rigorously defined way. Convergence results are cited while practical aspects of the algorithm are emphasized. Ideas for the transition to the Navier Stokes domain are shortly discussed.

This report contains the following three papers about computations of rarefied gas flows:; ; a) Rarefied gas flow around a disc with different angles of attack, published in the proceedings of the 17th RGD Symposium, Aachen, 1990.; ; b) Hypersonic flow calculations around a 3D-deltawing at low Knudsen numbers, published in the proceedings of the 17th RGD Symposium,; Aachen, 1990.; ; c) Rarefied gas flow around a 3D-deltawing, published in the proceedings of the Workshop on Hypersonic Flows for Reentry Problems,; Part 1, Antibes, France, January 22-25, 1990.; ; All computations are part of the HERMES Research and Development Program.

As an alternative to the commonly used Monte Carlo Simulation methods for solving the Boltzmann equation we have developed a new code with certain important improvements. We present results of calculations on the reentry phase of a space shuttle. One aim was to test physical models of internal energies and of gas-surface interactions.