### Refine

#### Year of publication

#### Keywords

- Integer programming (4)
- hub location (3)
- Heuristics (2)
- Logistics (2)
- Supply Chain Management (2)
- facility location (2)
- software development (2)
- supply chain management (2)
- : multiple objective programming (1)
- Assigment (1)

#### Faculty / Organisational entity

- Fraunhofer (ITWM) (24)
- Fachbereich Mathematik (3)

Facility location problems in the plane are among the most widely used tools of Mathematical Programming in modeling real-world problems. In many of these problems restrictions have to be considered which correspond to regions in which a placement of new locations is forbidden. We consider center and median problems where the forbidden set is
a union of pairwise disjoint convex sets. As applications we discuss the assembly of printed circuit boards, obnoxious facility location and the location of emergency facilities.

Given Q different objective functions, three types of single-facility problems
are considered: Lexicographic, pareto and max ordering problems. After discussing the interrelation between the problem types, a complete characterization of lexicographic locations and some instances of pareto and max ordering locations is given. The characterizations result in efficient solution algorithms for finding these locations. The paper relies heavily on the theory of restricted locations developed by the same authors, and can be further extended, for instance, to multifacility problems with several objectives. The proposed approach is more general than previously published results on multicriteria planar location problems and is particulary suited for modelling real-world problems.

In this paper, a multi-period supply chain network design problem is addressed. Several aspects of practical relevance are considered such as those related with the financial decisions that must be accounted for by a company managing a supply chain. The decisions to be made comprise the location of the facilities, the flow of commodities and the investments to make in alternative activities to those directly related with the supply chain design. Uncertainty is assumed for demand and interest rates, which is described by a set of scenarios. Therefore, for the entire planning horizon, a tree of scenarios is built. A target is set for the return on investment and the risk of falling below it is measured and accounted for. The service level is also measured and included in the objective function. The problem is formulated as a multi-stage stochastic mixed-integer linear programming problem. The goal is to maximize the total financial benefit. An alternative formulation which is based upon the paths in the scenario tree is also proposed. A methodology for measuring the value of the stochastic solution in this problem is discussed. Computational tests using randomly generated data are presented showing that the stochastic approach is worth considering in these type of problems.

Home Health Care (HHC) services are becoming increasingly important in Europe’s aging societies. Elderly people have varying degrees of need for assistance and medical treatment. It is advantageous to allow them to live in their own homes as long as possible, since a long-term stay in a nursing home can be much more costly for the social insurance system than a treatment at home providing assistance to the required level. Therefore, HHC services are a cost-effective and flexible instrument in the social system. In Germany, organizations providing HHC services are generally either larger charities with countrywide operations or small private companies offering services only in a city or a rural area. While the former have a hierarchical organizational structure and a large number of employees, the latter typically only have some ten to twenty nurses under contract. The relationship to the patients (“customers”) is often long-term and can last for several years. Therefore acquiring and keeping satisfied customers is crucial for HHC service providers and intensive competition among them is observed.

The capacitated single-allocation hub location problem revisited: A note on a classical formulation
(2009)

Denote by G = (N;A) a complete graph where N is the set of nodes and A is the set of edges. Assume that a °ow wij should be sent from each node i to each node j (i; j 2 N). One possibility is to send these °ows directly between the corresponding pairs of nodes. However, in practice this is often neither e±cient nor costly attractive because it would imply that a link was built between each pair of nodes. An alternative is to select some nodes to become hubs and use them as consolidation and redistribution points that altogether process more e±ciently the flow in the network. Accordingly, hubs are nodes in the graph that receive tra±c (mail, phone calls, passengers, etc) from di®erent origins (nodes) and redirect this tra±c directly to the destination nodes (when a link exists) or else to other hubs. The concentration of tra±c in the hubs and its shipment to other hubs lead to a natural decrease in the overall cost due to economies of scale.

A general multi-period network redesign problem arising in the context of strategic supply chain planning (SCP) is studied. Several aspects of practical relevance in SCP are captured namely, multiple facility layers with different types of facilities, flows between facilities in the same layer, direct shipments to customers, and facility relocation. An efficient two-phase heuristic approach is proposed for obtaining feasible solutions to the problem, which is initially modeled as a large-scale mixed-integer linear program. In the first stage of the heuristic, a linear programming rounding strategy is applied to second initial values for the binary location variables in the model. The second phase of the heuristic uses local search to correct the initial solution when feasibility is not reached or to improve the solution when its quality does not meet given criteria. The results of an extensive computational study performed on randomly generated instances are reported.

In this paper, an extension to the classical capacitated single-allocation hub location problem is studied in which the size of the hubs is part of the decision making process. For each potential hub a set of capacities is assumed to be available among which one can be chosen. Several formulations are proposed for the problem, which are compared in terms of the bound provided by the linear programming relaxation. Di®erent sets of inequalities are proposed to enhance the models. Several preprocessing tests are also presented with the goal of reducing the size of the models for each particular instance. The results of the computational experiments performed using the proposed models are reported.

Territory design and districting may be viewed as the problem of grouping small geographic areas into larger geographic clusters called territories in such a way that the latter are acceptable according to relevant planning criteria. The availability of GIS on computers and the growing interest in Geo-Marketing leads to an increasing importance of this area. Despite the wide range of applications for territory design problems, when taking a closer look at the models proposed in the literature, a lot of similarities can be noticed. Indeed, the models are many times very similar and can often be, more or less directly, carried over to other applications. Therefore, our aim is to provide a generic application-independent model and present efficient solution techniques. We introduce a basic model that covers aspects common to most applications. Moreover, we present a method for solving the general model which is based on ideas from the field of computational geometry. Theoretical as well as computational results underlining the efficiency of the new approach will be given. Finally, we show how to extend the model and solution algorithm to make it applicable for a broader range of applications and how to integrate the presented techniques into a GIS.

The problem discussed in this paper is motivated by the new recycling directiveWEEE of the EC. The core of this law is, that each company which sells electrical or electronic equipment in a European country has the obligation to recollect and recycle an amount of returned items which is proportional to its market share. To assign collection stations to companies, in Germany for one product type a territory design approach is planned. However, in contrast to classical territory design, the territories should be geographically as dispersed as possible to avoid that a company, resp. its logistics provider responsible for the recollection, gains a monopoly in some region. First, we identify an appropriate measure for the dispersion of a territory. Afterwards, we present a first mathematical programming model for this new problem as well as a solution method based on the GRASP methodology. Extensive computational results illustrate the suitability of the model and assess the effectiveness of the heuristic.

Facility location decisions play a critical role in the strategic design of supply chain networks. In this paper, an extensive literature review of facility location models in the context of supply chain management is given. Following a brief review of core models in facility location, we identify basic features that such models must capture to support decision-making involved in strategic supply chain planning. In particular, the integration of location decisions with other decisions relevant to the design of a supply chain network is discussed. Furthermore, aspects related to the structure of the supply chain network, including those specific to reverse logistics, are also addressed. Significant contributions to the current state-of-the-art are surveyed taking into account numerous factors. Supply chain performance measures and optimization techniques are also reviewed. Applications of facility location models to supply chain network design ranging across various industries are discussed. Finally, a list of issues requiring further research are highlighted.