KLUEDO RSS FeedNeueste Dokumente / Latest documents
https://kluedo.ub.uni-kl.de/index/index/
Fri, 25 Mar 2011 14:44:40 +0100Fri, 25 Mar 2011 14:44:40 +0100A uniform central limit theorem for neural network based autoregressive processes with applications to change-point analysis
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2302
We consider an autoregressive process with a nonlinear regression function that is modeled by a feedforward neural network. We derive a uniform central limit theorem which is useful in the context of change-point analysis. We propose a test for a change in the autoregression function which - by the uniform central limit theorem - has asymptotic power one for a large class of alternatives including local alternatives.Claudia Kirch; Joseph Tadjuidje Kamgaingpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2302Fri, 25 Mar 2011 14:44:40 +0100Testing for parameter stability in nonlinear autoregressive models
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2301
In this paper we develop testing procedures for the detection of structural changes in nonlinear autoregressive processes. For the detection procedure we model the regression function by a single layer feedforward neural network. We show that CUSUM-type tests based on cumulative sums of estimated residuals, that have been intensively studied for linear regression, can be extended to this case. The limit distribution under the null hypothesis is obtained, which is needed to construct asymptotic tests. For a large class of alternatives it is shown that the tests have asymptotic power one. In this case, we obtain a consistent change-point estimator which is related to the test statistics. Power and size are further investigated in a small simulation study with a particular emphasis on situations where the model is misspecified, i.e. the data is not generated by a neural network but some other regression function. As illustration, an application on the Nile data set as well as S&P log-returns is given.Claudia Kirch; Joseph Tadjuidje Kamgaingpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2301Fri, 25 Mar 2011 14:44:06 +0100Mixtures of Nonparametric Autoregression, revised
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2115
We consider data generating mechanisms which can be represented as mixtures of finitely many regression or autoregression models. We propose nonparametric estimators for the functions characterizing the various mixture components based on a local quasi maximum likelihood approach and prove their consistency. We present an EM algorithm for calculating the estimates numerically which is mainly based on iteratively applying common local smoothers and discuss its convergence properties.Jürgen Franke; Jean-Pierre Stockis; Joseph Tadjuidje; W.K. Lipreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2115Mon, 27 Jul 2009 08:47:55 +0200Mixtures of Nonparametric Autoregressions
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2102
We consider data generating mechanisms which can be represented as mixtures of finitely many regression or autoregression models. We propose nonparametric estimators for the functions characterizing the various mixture components based on a local quasi maximum likelihood approach and prove their consistency. We present an EM algorithm for calculating the estimates numerically which is mainly based on iteratively applying common local smoothers and discuss its convergence properties.Jürgen Franke; Jean-Pierre Stockis; Joseph Tadjuidje; W.K. Lipreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2102Mon, 13 Jul 2009 15:52:26 +0200