KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Tue, 24 Feb 2015 11:08:29 +0100Tue, 24 Feb 2015 11:08:29 +0100Testrig optimization by block loads: Remodelling of damage as Gaussian functions and their clustering method
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4003
In automotive testrigs we apply load time series to components such that the outcome is as close as possible to some reference data. The testing procedure should in general be less expensive and at the same time take less time for testing. In my thesis, I propose a testrig damage optimization problem (WSDP). This approach improves upon the testrig stress optimization problem (TSOP) used as a state of the art by industry experts.
In both (TSOP) and (WSDP), we optimize the load time series for a given testrig configuration. As the name suggests, in (TSOP) the reference data is the stress time series. The detailed behaviour of the stresses as functions of time are sometimes not the most important topic. Instead the damage potential of the stress signals are considered. Since damage is not part of the objectives in the (TSOP) the total damage computed from the optimized load time series is not optimal with respect to the reference damage. Additionally, the load time series obtained is as long as the reference stress time series and the total damage computation needs cycle counting algorithms and Goodmann corrections. The use of cycle counting algorithms makes the computation of damage from load time series non-differentiable.
To overcome the issues discussed in the previous paragraph this thesis uses block loads for the load time series. Using of block loads makes the damage differentiable with respect to the load time series. Additionally, in some special cases it is shown that damage is convex when block loads are used and no cycle counting algorithms are required. Using load time series with block loads enables us to use damage in the objective function of the (WSDP).
During every iteration of the (WSDP), we have to find the maximum total damage over all plane angles. The first attempt at solving the (WSDP) uses discretization of the interval for plane angle to find the maximum total damage at each iteration. This is shown to give unreliable results and makes maximum total damage function non-differentiable with respect to the plane angle. To overcome this, damage function for a given surface stress tensor due to a block load is remodelled by Gaussian functions. The parameters for the new model are derived.
When we model the damage by Gaussian function, the total damage is computed as a sum of Gaussian functions. The plane with the maximum damage is similar to the modes of the Gaussian Mixture Models (GMM), the difference being that the Gaussian functions used in GMM are probability density functions which is not the case in the damage approximation presented in this work. We derive conditions for a single maximum for Gaussian functions, similar to the ones given for the unimodality of GMM by Aprausheva et al. in [1].
By using the conditions for a single maximum we give a clustering algorithm that merges the Gaussian functions in the sum as clusters. Each cluster obtained through clustering is such that it has a single maximum in the absence of other Gaussian functions of the sum. The approximate point of the maximum of each cluster is used as the starting point for a fixed point equation on the original damage function to get the actual maximum total damage at each iteration.
We implement the method for the (TSOP) and the two methods (with discretization and with clustering) for (WSDP) on two example problems. The results obtained from the (WSDP) using discretization is shown to be better than the results obtained from the (TSOP). Furthermore we show that, (WSDP) using clustering approach to finding the maximum total damage, takes less number of iterations and is more reliable than using discretization.Chhitiz Buchasiadoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4003Tue, 24 Feb 2015 11:08:29 +0100Freeness of hyperplane arrangements with multiplicities
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3986
This bachelor thesis is concerned with arrangements of hyperplanes, that
is, finite collections of hyperplanes in a finite-dimensional vector
space. Such arrangements can be studied using methods from
combinatorics, topology or algebraic geometry. Our focus lies on an
algebraic object associated to an arrangement \(\mathcal{A}\), the module \(\mathcal{D(A)}\) of
logarithmic derivations along \(\mathcal{A}\). It was introduced by K. Saito in the
context of singularity theory, and intensively studied by Terao and
others. If \(\mathcal{D(A)}\) admits a basis, the arrangement \(\mathcal{A}\) is called free.
Ziegler generalized the concept of freeness to so-called
multiarrangements, where each hyperplane carries a multiplicity. Terao
conjectured that freeness of arrangements can be decided based on the
combinatorics. We pursue the analogous question for multiarrangements in
special cases. Firstly, we give a new proof of a result of Ziegler
stating that generic multiarrangements are totally non-free, that is,
non-free for any multiplicity. Our proof relies on the new concept of
unbalanced multiplicities. Secondly, we consider freeness asymptotically
for increasing multiplicity of a fixed hyperplane. We give an explicit
bound for the multiplicity where the freeness property has stabilized.Lukas Kühnebachelorthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3986Thu, 12 Feb 2015 16:33:38 +0100Bicriteria approach to the optimal location of surveillance cameras
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3979
We consider the problem of finding efficient locations of surveillance cameras, where we distinguish
between two different problems. In the first, the whole area must be monitored and the number of cameras
should be as small as possible. In the second, the goal is to maximize the monitored area for a fixed number of
cameras. In both of these problems, restrictions on the ability of the cameras, like limited depth of view or range
of vision are taken into account. We present solution approaches for these problems and report on results of
their implementations applied to an authentic problem. We also consider a bicriteria problem with two objectives:
maximizing the monitored area and minimizing the number of cameras, and solve it for our study case.Aleksandra Gross; Horst W. Hamacherpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3979Thu, 29 Jan 2015 08:18:53 +0100Combinations of Boolean Groebner Bases and SAT Solvers
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3958
In this thesis, we combine Groebner basis with SAT Solver in different manners.
Both SAT solvers and Groebner basis techniques have their own strength and weakness.
Combining them could fix their weakness.
The first combination is using Groebner techniques to learn additional binary clauses for SAT solver from a selection of clauses. This combination is first proposed by Zengler and Kuechlin.
However, in our experiments, about 80 percent Groebner basis computations give no new binary clauses.
By selecting smaller and more compact input for Groebner basis computations, we can significantly
reduce the number of inefficient Groebner basis computations, learn much more binary clauses. In addition,
the new strategy can reduce the solving time of a SAT Solver in general, especially for large and hard problems.
The second combination is using all-solution SAT solver and interpolation to compute Boolean Groebner bases of Boolean elimination ideals of a given ideal. Computing Boolean Groebner basis of the given ideal is an inefficient method in case we want to eliminate most of the variables from a big system of Boolean polynomials.
Therefore, we propose a more efficient approach to handle such cases.
In this approach, the given ideal is translated to the CNF formula. Then an all-solution SAT Solver is used to find the projection of all solutions of the given ideal. Finally, an algorithm, e.g. Buchberger-Moeller Algorithm, is used to associate the reduced Groebner basis to the projection.
We also optimize the Buchberger-Moeller Algorithm for lexicographical ordering and compare it with Brickenstein's interpolation algorithm.
Finally, we combine Groebner basis and abstraction techniques to the verification of some digital designs that contain complicated data paths.
For a given design, we construct an abstract model.
Then, we reformulate it as a system of polynomials in the ring \({\mathbb Z}_{2^k}[x_1,\dots,x_n]\).
The variables are ordered in a way such that the system has already been a Groebner basis w.r.t lexicographical monomial ordering.
Finally, the normal form is employed to prove the desired properties.
To evaluate our approach, we verify the global property of a multiplier and a FIR filter using the computer algebra system Singular. The result shows that our approach is much faster than the commercial verification tool from Onespin on these benchmarks.Thanh Hung Nguyendoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3958Thu, 18 Dec 2014 14:11:19 +0100Robust Flows with Losses and Improvability in Evacuation Planning
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3947
We consider a network flow problem, where the outgoing flow is reduced by a certain percentage in each node. Given a maximum amount of flow that can leave the source node, the aim is to find a solution that maximizes the amount of flow which arrives at the sink.
Starting from this basic model, we include two new, additional aspects: On the one hand, we are able to reduce the loss at some of the nodes; on the other hand, the exact loss values are not known, but may come from a discrete uncertainty set of exponential size.
Applications for problems of this type can be found in evacuation planning, where one would like to improve the safety of nodes such that the number of evacuees reaching safety is maximized.
We formulate the resulting robust flow problem with losses and improvability as a mixed-integer program for finitely many scenarios, and present an iterative scenario-generation procedure that avoids the inclusion of all scenarios from the beginning. In a computational study using both randomly generated instance and realistic data based on the city of Nice, France, we compare our solution algorithms.Marc Goerigk; Ismaila Abderhamanepreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3947Wed, 10 Dec 2014 15:24:43 +0100Transit Dependent Evacuation Planning for Kathmandu Valley: A Case Study
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3944
Due to the increasing number of natural or man-made disasters, the application of operations research methods in evacuation planning has seen a rising interest in the research community. From the beginning, evacuation planning has been highly focused on car-based evacuation. Recently, also the evacuation of transit depended evacuees with the help of buses has been considered.
In this case study, we apply two such models and solution algorithms to evacuate a core part of the metropolitan capital city Kathmandu of Nepal as a hypothetical endangered region, where a large part of population is transit dependent. We discuss the computational results for evacuation time under a broad range of possible scenarios, and derive planning suggestions for practitioners.Urmila Pyakurel; Marc Goerigk; Tanka Dhamala; Horst W. Hamacherreporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3944Wed, 10 Dec 2014 14:11:41 +0100Multilevel Constructions
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3942
The thesis consists of the two chapters.
The first chapter is addressed to make a deep investigation of the MLMC method. In particular we take an optimisation view at the estimate. Rather than fixing the number of discretisation points \(n_i\) to be a geometric sequence, we are trying to find an optimal set up for \(n_i\) such that for a fixed error the estimate can be computed within a minimal time.
In the second chapter we propose to enhance the MLMC estimate with the weak extrapolation technique. This technique helps to improve order of a weak convergence of a scheme and as a result reduce CC of an estimate. In particular we study high order weak extrapolation approach, which is know not be inefficient in the standard settings. However, a combination of the MLMC and the weak extrapolation yields an improvement of the MLMC.Anton Kostiukdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3942Wed, 10 Dec 2014 08:29:03 +0100A Bicriteria Approach to Robust Optimization
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3940
The classic approach in robust optimization is to optimize the solution with respect to the worst case scenario. This pessimistic approach yields solutions that perform best if the worst scenario happens, but also usually perform bad on average. A solution that optimizes the average performance on the other hand lacks in worst-case performance guarantee.
In practice it is important to find a good compromise between these two solutions. We propose to deal with this problem by considering it from a bicriteria perspective. The Pareto curve of the bicriteria problem visualizes exactly how costly it is to ensure robustness and helps to choose the solution with the best balance between expected and guaranteed performance.
Building upon a theoretical observation on the structure of Pareto solutions for problems with polyhedral feasible sets, we present a column generation approach that requires no direct solution of the computationally expensive worst-case problem. In computational experiments we demonstrate the effectivity of both the proposed algorithm, and the bicriteria perspective in general.André Chassein; Marc Goerigkpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3940Mon, 08 Dec 2014 16:08:38 +0100Robust Geometric Programming is co-NP hard
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3938
Geometric Programming is a useful tool with a wide range of applications in engineering. As in real-world problems input data is likely to be affected by uncertainty, Hsiung, Kim, and Boyd introduced robust geometric programming to include the uncertainty in the optimization process. They also developed a tractable approximation method to tackle this problem. Further, they pose the question whether there exists a tractable reformulation of their robust geometric programming model instead of only an approximation method. We give a negative answer to this question by showing that robust geometric programming is co-NP hard in its natural posynomial form.André Chassein; Marc Goerigkpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3938Fri, 05 Dec 2014 14:17:25 +0100Numerical solution of a nonstandard Darcy flow model
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3933
We consider a Darcy flow model with saturation-pressure relation extended
with a dynamic term, namely, the time derivative of the saturation.
This model was proposed in works of J.Hulshof and J.R.King (1998), S.M.Hassanizadeh and W.G.Gray (1993),
F.Stauffer (1978).
We restrict ourself to one spatial dimension and strictly positive
initial saturation. For this case we transform the initial-boundary value
problem into combination of elliptic boundary-value problem and initial
value problem for abstract Ordinary Differential Equation. This splitting
is rather helpful both for theoretical aspects and numerical methods.Vsevolod Laptevstudythesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3933Tue, 25 Nov 2014 12:40:41 +0100Sink Location to Find Optimal Shelters in Evacuation Planning
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3934
The sink location problem is a combination of network flow and location problems: From a given set of nodes in a flow network a minimum cost subset \(W\) has to be selected such that given supplies can be transported to the nodes in \(W\). In contrast to its counterpart, the source location problem which has already been studied in the literature, sinks have, in general, a limited capacity. Sink location has a decisive application in evacuation planning, where the supplies correspond to the number of evacuees and the sinks to emergency shelters.
We classify sink location problems according to capacities on shelter nodes, simultaneous or non-simultaneous flows, and single or multiple assignments of evacuee groups to shelters. Resulting combinations are interpreted in the evacuation context and analyzed with respect to their worst-case complexity status.
There are several approaches to tackle these problems: Generic solution methods for uncapacitated problems are based on source location and modifications of the network. In the capacitated case, for which source location cannot be applied, we suggest alternative approaches which work in the original network. It turns out that latter class algorithms are superior to the former ones. This is established in numerical tests including random data as well as real world data from the city of Kaiserslautern, Germany.Philipp Heßler; Horst W. Hamacherpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3934Mon, 24 Nov 2014 11:46:38 +0100A coverage-based Box-Algorithm to compute a representation for optimization problems with three objective functions
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3911
A new algorithm for optimization problems with three objective functions is presented which computes a representation for the set of nondominated points. This representation is guaranteed to have a desired coverage error and a bound on the number of iterations needed by the algorithm to meet this coverage error is derived. Since the representation does not necessarily contain nondominated points only, ideas to calculate bounds for the representation error are given. Moreover, the incorporation of domination during the algorithm and other quality measures are discussed.Tobias Kuhn; Stefan Ruzikapreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3911Fri, 07 Nov 2014 10:55:37 +0100Alternative Formulations for the Ordered Weighted Averaging Objective
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3899
The ordered weighted averaging objective (OWA) is an aggregate function over multiple optimization criteria which received increasing attention by the research community over the last decade. Different to the ordered weighted sum, weights are attached to ordered objective functions (i.e., a weight for the largest value, a weight for the second-largest value and so on). As this contains max-min or worst-case optimization as a special case, OWA can also be considered as an alternative approach to robust optimization.
For linear programs with OWA objective, compact reformulations exist, which result in extended linear programs. We present new such reformulation models with reduced size. A computational comparison indicates that these formulations improve solution times.Andre Chassein; Marc Goerigkpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3899Thu, 16 Oct 2014 10:45:12 +0200On The Recoverable Robust Traveling Salesman Problem
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3898
We consider an uncertain traveling salesman problem, where distances between nodes are not known exactly, but may stem from an uncertainty set of possible scenarios. This uncertainty set is given as intervals with an additional bound on the number of distances that may deviate from their expected, nominal value.
A recoverable robust model is proposed, that allows a tour to change a bounded number of edges once a scenario becomes known. As the model contains an exponential number of constraints and variables, an iterative algorithm is proposed, in which tours and scenarios are computed alternately.
While this approach is able to find a provably optimal solution to the robust model, it also needs to solve increasingly complex subproblems. Therefore, we also consider heuristic solution procedures based on local search moves using a heuristic estimate of the actual objective function. In computational experiments, these approaches are compared.
Finally, an alternative recovery model is discussed, where a second-stage recovery tour is not required to visit all nodes of the graph. We show that the previously NP-hard evaluation of a fixed solution now becomes solvable in polynomial time.Andre Chassein; Marc Goerigkpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3898Thu, 16 Oct 2014 10:41:06 +0200Optimization Models to Enhance Resilience in Evacuation Planning
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3897
We argue that the concepts of resilience in engineering science and robustness in mathematical optimization are strongly related. Using evacuation planning as an example application, we demonstrate optimization techniques to improve solution resilience. These include a direct modelling of the uncertainty for stochastic or robust optimization, as well as taking multiple objective functions into account.Marc Goerigk; Horst Hamacherpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3897Thu, 16 Oct 2014 10:22:16 +0200Effective equations for anisotropic glioma spread with proliferation: a multiscale approach
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3893
Glioma is a common type of primary brain tumor, with a strongly invasive potential, often exhibiting nonuniform, highly irregular growth. This makes it difficult to assess
the degree of extent of the tumor, hence bringing about a supplementary challenge for the treatment. It is therefore necessary to understand the
migratory behavior of glioma in greater detail.
In this paper we propose a multiscale model for glioma growth and migration. Our model couples the microscale dynamics (reduced to the binding of surface receptors to the
surrounding tissue) with a kinetic transport equation for the cell density on the mesoscopic level of individual cells. On the latter scale we also include the
proliferation of tumor cells via effects of interaction with the tissue. An adequate parabolic scaling yields a convection-diffusion-reaction equation, for which the coefficients
can be explicitly determined from the information about the tissue obtained by diffusion tensor imaging. Numerical simulations relying on DTI measurements confirm the biological
findings that glioma spreads
along white matter tracts.Christian Engwer; Alexander Hunt; Christina Surulescupreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3893Tue, 14 Oct 2014 14:08:25 +0200Variance Reduction Procedures for Market Risk Estimation
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3885
Monte Carlo simulation is one of the commonly used methods for risk estimation on financial markets, especially for option portfolios, where any analytical approximation is usually too inaccurate. However, the usually high computational effort for complex portfolios with a large number of underlying assets motivates the application of variance reduction procedures. Variance reduction for estimating the probability of high portfolio losses has been extensively studied by Glasserman et al. A great variance reduction is achieved by applying an exponential twisting importance sampling algorithm together with stratification. The popular and much faster Delta-Gamma approximation replaces the portfolio loss function in order to guide the choice of the importance sampling density and it plays the role of the stratification variable. The main disadvantage of the proposed algorithm is that it is derived only in the case of Gaussian and some heavy-tailed changes in risk factors.
Hence, our main goal is to keep the main advantage of the Monte Carlo simulation, namely its ability to perform a simulation under alternative assumptions on the distribution of the changes in risk factors, also in the variance reduction algorithms. Step by step, we construct new variance reduction techniques for estimating the probability of high portfolio losses. They are based on the idea of the Cross-Entropy importance sampling procedure. More precisely, the importance sampling density is chosen as the closest one to the optimal importance sampling density (zero variance estimator) out of some parametric family of densities with respect to Kullback - Leibler cross-entropy. Our algorithms are based on the special choices of the parametric family and can now use any approximation of the portfolio loss function. A special stratification is developed, so that any approximation of the portfolio loss function under any assumption of the distribution of the risk factors can be used. The constructed algorithms can easily be applied for any distribution of risk factors, no matter if light- or heavy-tailed. The numerical study exhibits a greater variance reduction than of the algorithm from Glasserman et al. The use of a better approximation may improve the performance of our algorithms significantly, as it is shown in the numerical study.
The literature on the estimation of the popular market risk measures, namely VaR and CVaR, often refers to the algorithms for estimating the probability of high portfolio losses, describing the corresponding transition process only briefly. Hence, we give a consecutive discussion of this problem. Results necessary to construct confidence intervals for both measures under the mentioned variance reduction procedures are also given.
Mykhailo Pupashenkodoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3885Wed, 01 Oct 2014 09:47:40 +0200Numerical schemes for networks of hyperbolic conservation laws
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3884
In this paper we propose a procedure to extend classical numerical schemes for
hyperbolic conservation laws to networks of hyperbolic conservation laws. At the
junctions of the network we solve the given coupling conditions and minimize the
contributions of the outgoing numerical waves. This flexible procedure allows
us to also use central schemes at the junctions. Several numerical examples are
considered to investigate the performance of this new approach compared to the
common Godunov solver and exact solutions.Raul Dr. Borschepreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3884Wed, 01 Oct 2014 09:37:55 +0200A multiscale model for acid-mediated tumor invasion: therapy approaches
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3870
Starting from the two-scale model for pH-taxis of cancer cells introduced in [1], we consider here an extension accounting for tumor heterogeneity w.r.t. treatment sensitivity and a treatment approach including chemo- and radiotherapy. The effect of peritumoral region alkalinization on such therapeutic combination is investigated with the aid of numerical simulations.Gülnihal Meral ; Christian Stinner; Christina Surulescupreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3870Fri, 12 Sep 2014 14:09:53 +0200New aspects of optimal investment in continuous time
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3867
This thesis focuses on dealing with some new aspects of continuous time portfolio optimization by using the stochastic control method.
First, we extend the Busch-Korn-Seifried model for a large investor by using the Vasicek model for the short rate, and that problem is solved explicitly for two types of intensity functions.
Next, we justify the existence of the constant proportion portfolio insurance (CPPI) strategy in a framework containing a stochastic short rate and a Markov switching parameter. The effect of Vasicek short rate on the CPPI strategy has been studied by Horsky (2012). This part of the thesis extends his research by including a Markov switching parameter, and the generalization is based on the B\"{a}uerle-Rieder investment problem. The explicit solutions are obtained for the portfolio problem without the Money Market Account as well as the portfolio problem with the Money Market Account.
Finally, we apply the method used in Busch-Korn-Seifried investment problem to explicitly solve the portfolio optimization with a stochastic benchmark.Nhat Thu Trandoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3867Tue, 09 Sep 2014 12:50:40 +0200Edgeworth Expansions for Binomial Trees
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3861
In the theory of option pricing one is usually concerned with evaluating expectations under the risk-neutral measure in a continuous-time model.
However, very often these values cannot be calculated explicitly and numerical methods need to be applied to approximate the desired quantity. Monte Carlo simulations, numerical methods for PDEs and the lattice approach are the methods typically employed. In this thesis we consider the latter approach, with the main focus on binomial trees.
The binomial method is based on the concept of weak convergence. The discrete-time model is constructed so as to ensure convergence in distribution to the continuous process. This means that the expectations calculated in the binomial tree can be used as approximations of the option prices in the continuous model. The binomial method is easy to implement and can be adapted to options with different types of payout structures, including American options. This makes the approach very appealing. However, the problem is that in many cases, the convergence of the method is slow and highly irregular, and even a fine discretization does not guarantee accurate price approximations. Therefore, ways of improving the convergence properties are required.
We apply Edgeworth expansions to study the convergence behavior of the lattice approach. We propose a general framework, that allows to obtain asymptotic expansion for both multinomial and multidimensional trees. This information is then used to construct advanced models with superior convergence properties.
In binomial models we usually deal with triangular arrays of lattice random vectors. In this case the available results on Edgeworth expansions for lattices are not directly applicable. Therefore, we first present Edgeworth expansions, which are also valid for the binomial tree setting. We then apply these result to the one-dimensional and multidimensional Black-Scholes models. We obtain third order expansions
for general binomial and trinomial trees in the 1D setting, and construct advanced models for digital, vanilla and barrier options. Second order expansion are provided for the standard 2D binomial trees and advanced models are constructed for the two-asset digital and the two-asset correlation options. We also present advanced binomial models for a multidimensional setting.Alona Bockdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3861Tue, 02 Sep 2014 09:07:50 +0200First Order Algorithms in Variational Image Processing
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3852
Variational methods in imaging are nowadays developing towards a quite universal and
exible
tool, allowing for highly successful approaches on tasks like denoising, deblurring, inpainting,
segmentation, super-resolution, disparity, and optical flow estimation. The overall structure of such approaches is of the form
D(Ku) + alpha R(u) to min_u
;
where the functional D is a data fidelity term also depending on some input data f and
measuring the deviation of Ku from such and R is a regularization functional. Moreover
K is a (often linear) forward operator modeling the dependence of data on an underlying
image, and alpha is a positive regularization parameter. While D is often smooth and (strictly)
convex, the current practice almost exclusively uses nonsmooth regularization functionals.
The majority of successful techniques is using nonsmooth and convex functionals like the total variation and generalizations thereof, cf. [28, 31, 40], or l_1-norms of coeefficients arising
from scalar products with some frame system, cf. [73] and references therein.
The efficient solution of such variational problems in imaging demands for appropriate algorithms.
Taking into account the specific structure as a sum of two very different terms
to be minimized, splitting algorithms are a quite canonical choice. Consequently this field
has revived the interest in techniques like operator splittings or augmented Lagrangians. In
this chapter we shall provide an overview of methods currently developed and recent results
as well as some computational studies providing a comparison of different methods and also
illustrating their success in applications.
We start with a very general viewpoint in the first sections, discussing basic notations, properties
of proximal maps, firmly non-expansive and averaging operators, which form the basis
of further convergence arguments. Then we proceed to a discussion of several state-of-the
art algorithms and their (theoretical) convergence properties. After a section discussing issues
related to the use of analogous iterative schemes for ill-posed problems, we present some practical convergence studies in numerical examples related to PET and spectral CT reconstruction.Martin Burger; Alexander Sawatzky; Gabriele Steidlpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3852Mon, 18 Aug 2014 08:34:49 +0200Algorithms in SINGULAR: Parallelization, Syzygies, and Singularities
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3840
This thesis, whose subject is located in the field of algorithmic commutative algebra and algebraic geometry, consists of three parts.
The first part is devoted to parallelization, a technique which allows us to take advantage of the computational power of modern multicore processors. First, we present parallel algorithms for the normalization of a reduced affine algebra A over a perfect field. Starting from the algorithm of Greuel, Laplagne, and Seelisch, we propose two approaches. For the local-to-global approach, we stratify the singular locus Sing(A) of A, compute the normalization locally at each stratum and finally reconstruct the normalization of A from the local results. For the second approach, we apply modular methods to both the global and the local-to-global normalization algorithm.
Second, we propose a parallel version of the algorithm of Gianni, Trager, and Zacharias for primary decomposition. For the parallelization of this algorithm, we use modular methods for the computationally hardest steps, such as for the computation of the associated prime ideals in the zero-dimensional case and for the standard bases computations. We then apply an innovative fast method to verify that the result is indeed a primary decomposition of the input ideal. This allows us to skip the verification step at each of the intermediate modular computations.
The proposed parallel algorithms are implemented in the open-source computer algebra system SINGULAR. The implementation is based on SINGULAR's new parallel framework which has been developed as part of this thesis and which is specifically designed for applications in mathematical research.
In the second part, we propose new algorithms for the computation of syzygies, based on an in-depth analysis of Schreyer's algorithm. Here, the main ideas are that we may leave out so-called "lower order terms" which do not contribute to the result of the algorithm, that we do not need to order the terms of certain module elements which occur at intermediate steps, and that some partial results can be cached and reused.
Finally, the third part deals with the algorithmic classification of singularities over the real numbers. First, we present a real version of the Splitting Lemma and, based on the classification theorems of Arnold, algorithms for the classification of the simple real singularities. In addition to the algorithms, we also provide insights into how real and complex singularities are related geometrically. Second, we explicitly describe the structure of the equivalence classes of the unimodal real singularities of corank 2. We prove that the equivalences are given by automorphisms of a certain shape. Based on this theorem, we explain in detail how the structure of the equivalence classes can be computed using SINGULAR and present the results in concise form. The probably most surprising outcome is that the real singularity type \(J_{10}^-\) is actually redundant.Andreas Steenpassdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3840Wed, 30 Jul 2014 10:37:00 +0200A Framework for Shape Optimization in the Context of Isogeometric Analysis
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3833
We develop a framework for shape optimization problems under state equation con-
straints where both state and control are discretized by B-splines or NURBS. In other
words, we use isogeometric analysis (IGA) for solving the partial differential equation and a nodal approach to change domains where control points take the place of nodes and where thus a quite general class of functions for representing optimal shapes and their boundaries becomes available. The minimization problem is solved by a gradient descent method where the shape gradient will be defined in isogeometric terms. This
gradient is obtained following two schemes, optimize first–discretize then and, reversely,
discretize first–optimize then. We show that for isogeometric analysis, the two schemes yield the same discrete system. Moreover, we also formulate shape optimization with respect to NURBS in the optimize first ansatz which amounts to finding optimal control points and weights simultaneously. Numerical tests illustrate the theory.Daniela Fußeder; Bernd Simeon; Anh-Vu Vuongpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3833Thu, 24 Jul 2014 08:25:17 +0200Hierarchical Edge Colorings and Rehabilitation Therapy Planning in Germany
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3832
In this paper we give an overview on the system of rehabilitation clinics in Germany in general and the literature on patient scheduling applied to rehabilitation facilities in particular.
We apply a class-teacher model developed to this environment and then generalize it to meet some of the specific constraints of inpatient rehabilitation clinics. To this end we introduce a restricted edge coloring on undirected bipartite graphs which is called group-wise balanced. The problem considered is called patient-therapist-timetable problem with group-wise balanced constraints (PTTPgb). In order to specify weekly schedules further such that they produce a reasonable allocation to morning/afternoon (second level decision) and to the single periods (third level decision) we introduce (hierarchical PTTPgb). For the corresponding model, the hierarchical edge coloring problem, we present some first feasibility results. Ines M. Raschendorfer; Horst W. Hamacherpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3832Tue, 22 Jul 2014 11:16:14 +0200