KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Thu, 16 Mar 2017 08:27:05 +0100Thu, 16 Mar 2017 08:27:05 +0100Small self-centralizing subgroups in defect groups of finite classical groups
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4617
In this thesis, we consider a problem from modular representation theory of finite groups. Lluís Puig asked the question whether the order of the defect groups of a block \( B \) of the group algebra of a given finite group \( G \) can always be bounded in terms of the order of the vertices of an arbitrary simple module lying in \( B \).
In characteristic \( 2 \), there are examples showing that this is not possible in general, whereas in odd characteristic, no such examples are known. For instance, it is known that the answer to Puig's question is positive in case that \( G \) is a symmetric group, by work of Danz, Külshammer, and Puig.
Motivated by this, we study the cases where \( G \) is a finite classical group in non-defining characteristic or one of the finite groups \( G_2(q) \) or \( ³D_4(q) \) of Lie type, again in non-defining characteristic. Here, we generalize Puig's original question by replacing the vertices occurring in his question by arbitrary self-centralizing subgroups of the defect groups. We derive positive and negative answers to this generalized question.
\[\]
In addition to that, we determine the vertices of the unipotent simple \( GL_2(q) \)-module labeled by the partition \( (1,1) \) in characteristic \( 2 \). This is done using a method known as Brauer construction.Pablo Lukadoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4617Thu, 16 Mar 2017 08:27:05 +0100Graph Coloring Applications and Defining Sets in Graph Theory
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4612
Abstract
The main theme of this thesis is about Graph Coloring Applications and Defining Sets in Graph Theory.
As in the case of block designs, finding defining sets seems to be difficult problem, and there is not a general conclusion. Hence we confine us here to some special types of graphs like bipartite graphs, complete graphs, etc.
In this work, four new concepts of defining sets are introduced:
• Defining sets for perfect (maximum) matchings
• Defining sets for independent sets
• Defining sets for edge colorings
• Defining set for maximal (maximum) clique
Furthermore, some algorithms to find and construct the defining sets are introduced. A review on some known kinds of defining sets in graph theory is also incorporated, in chapter 2 the basic definitions and some relevant notations used in this work are introduced.
chapter 3 discusses the maximum and perfect matchings and a new concept for a defining set for perfect matching.
Different kinds of graph colorings and their applications are the subject of chapter 4.
Chapter 5 deals with defining sets in graph coloring. New results are discussed along with already existing research results, an algorithm is introduced, which enables to determine a defining set of a graph coloring.
In chapter 6, cliques are discussed. An algorithm for the determination of cliques using their defining sets. Several examples are included.
Masoumeh Ahadi Moghaddamdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4612Mon, 06 Mar 2017 14:35:31 +0100Portfolio Optimization with Risk Constraints in the View of Stochastic Interest Rates
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4602
We discuss the portfolio selection problem of an investor/portfolio manager in an arbitrage-free financial market where a money market account, coupon bonds and a stock are traded continuously. We allow for stochastic interest rates and in particular consider one and two-factor Vasicek models for the instantaneous
short rates. In both cases we consider a complete and an incomplete market setting by adding a suitable number of bonds.
The goal of an investor is to find a portfolio which maximizes expected utility
from terminal wealth under budget and present expected short-fall (PESF) risk
constraints. We analyze this portfolio optimization problem in both complete and
incomplete financial markets in three different cases: (a) when the PESF risk is
minimum, (b) when the PESF risk is between minimum and maximum and (c) without risk constraints. (a) corresponds to the portfolio insurer problem, in (b) the risk constraint is binding, i.e., it is satisfied with equality, and (c) corresponds
to the unconstrained Merton investment.
In all cases we find the optimal terminal wealth and portfolio process using the
martingale method and Malliavin calculus respectively. In particular we solve in the incomplete market settings the dual problem explicitly. We compare the
optimal terminal wealth in the cases mentioned using numerical examples. Without
risk constraints, we further compare the investment strategies for complete
and incomplete market numerically.William Ntambaradoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4602Wed, 01 Mar 2017 08:14:31 +0100Asymptotics for change-point tests and change-point estimators
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4599
In change-point analysis the point of interest is to decide if the observations follow one model
or if there is at least one time-point, where the model has changed. This results in two sub-
fields, the testing of a change and the estimation of the time of change. This thesis considers
both parts but with the restriction of testing and estimating for at most one change-point.
A well known example is based on independent observations having one change in the mean.
Based on the likelihood ratio test a test statistic with an asymptotic Gumbel distribution was
derived for this model. As it is a well-known fact that the corresponding convergence rate is
very slow, modifications of the test using a weight function were considered. Those tests have
a better performance. We focus on this class of test statistics.
The first part gives a detailed introduction to the techniques for analysing test statistics and
estimators. Therefore we consider the multivariate mean change model and focus on the effects
of the weight function. In the case of change-point estimators we can distinguish between
the assumption of a fixed size of change (fixed alternative) and the assumption that the size
of the change is converging to 0 (local alternative). Especially, the fixed case in rarely analysed
in the literature. We show how to come from the proof for the fixed alternative to the
proof of the local alternative. Finally, we give a simulation study for heavy tailed multivariate
observations.
The main part of this thesis focuses on two points. First, analysing test statistics and, secondly,
analysing the corresponding change-point estimators. In both cases, we first consider a
change in the mean for independent observations but relaxing the moment condition. Based on
a robust estimator for the mean, we derive a new type of change-point test having a randomized
weight function. Secondly, we analyse non-linear autoregressive models with unknown
regression function. Based on neural networks, test statistics and estimators are derived for
correctly specified as well as for misspecified situations. This part extends the literature as
we analyse test statistics and estimators not only based on the sample residuals. In both
sections, the section on tests and the one on the change-point estimator, we end with giving
regularity conditions on the model as well as the parameter estimator.
Finally, a simulation study for the case of the neural network based test and estimator is
given. We discuss the behaviour under correct and mis-specification and apply the neural
network based test and estimator on two data sets.Stefanie Schwaardoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4599Tue, 28 Feb 2017 13:18:02 +0100Modeling Road Roughness with Conditional Random Fields
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4469
A vehicles fatigue damage is a highly relevant figure in the complete vehicle design process.
Long term observations and statistical experiments help to determine the influence of differnt parts of the vehicle, the driver and the surrounding environment.
This work is focussing on modeling one of the most important influence factors of the environment: road roughness. The quality of the road is highly dependant on several surrounding factors which can be used to create mathematical models.
Such models can be used for the extrapolation of information and an estimation of the environment for statistical studies.
The target quantity we focus on in this work ist the discrete International Roughness Index or discrete IRI. The class of models we use and evaluate is a discriminative classification model called Conditional Random Field.
We develop a suitable model specification and show new variants of stochastic optimizations to train the model efficiently.
The model is also applied to simulated and real world data to show the strengths of our approach.Alexander Lemkendoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4469Mon, 17 Oct 2016 14:16:31 +0200Signature Standard Bases over Principal Ideal Rings
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4457
By using Gröbner bases of ideals of polynomial algebras over a field, many implemented algorithms manage to give exciting examples and counter examples in Commutative Algebra and Algebraic Geometry. Part A of this thesis will focus on extending the concept of Gröbner bases and Standard bases for polynomial algebras over the ring of integers and its factors \(\mathbb{Z}_m[x]\). Moreover we implemented two algorithms for this case in Singular which use different approaches in detecting useless computations, the classical Buchberger algorithm and a F5 signature based algorithm. Part B includes two algorithms that compute the graded Hilbert depth of a graded module over a polynomial algebra \(R\) over a field, as well as the depth and the multigraded Stanley depth of a factor of monomial ideals of \(R\). The two algorithms provide faster computations and examples that lead B. Ichim and A. Zarojanu to a counter example of a question of J. Herzog. A. Duval, B. Goeckner, C. Klivans and J. Martin have recently discovered a counter example for the Stanley Conjecture. We prove in this thesis that the Stanley Conjecture holds in some special cases. Part D explores the General Neron Desingularization in the frame of Noetherian local domains of dimension 1. We have constructed and implemented in Singular and algorithm that computes a strong Artin Approximation for Cohen-Macaulay local rings of dimension 1. Adrian Popescudoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4457Tue, 04 Oct 2016 09:49:56 +0200Gröbner Bases over Extention Fields of \(\mathbb{Q}\)
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4428
Gröbner bases are one of the most powerful tools in computer algebra and commutative algebra, with applications in algebraic geometry and singularity theory. From the theoretical point of view, these bases can be computed over any field using Buchberger's algorithm. In practice, however, the computational efficiency depends on the arithmetic of the coefficient field.
In this thesis, we consider Gröbner bases computations over two types of coefficient fields. First, consider a simple extension \(K=\mathbb{Q}(\alpha)\) of \(\mathbb{Q}\), where \(\alpha\) is an algebraic number, and let \(f\in \mathbb{Q}[t]\) be the minimal polynomial of \(\alpha\). Second, let \(K'\) be the algebraic function field over \(\mathbb{Q}\) with transcendental parameters \(t_1,\ldots,t_m\), that is, \(K' = \mathbb{Q}(t_1,\ldots,t_m)\). In particular, we present efficient algorithms for computing Gröbner bases over \(K\) and \(K'\). Moreover, we present an efficient method for computing syzygy modules over \(K\).
To compute Gröbner bases over \(K\), starting from the ideas of Noro [35], we proceed by joining \(f\) to the ideal to be considered, adding \(t\) as an extra variable. But instead of avoiding superfluous S-pair reductions by inverting algebraic numbers, we achieve the same goal by applying modular methods as in [2,4,27], that is, by inferring information in characteristic zero from information in characteristic \(p > 0\). For suitable primes \(p\), the minimal polynomial \(f\) is reducible over \(\mathbb{F}_p\). This allows us to apply modular methods once again, on a second level, with respect to the
modular factors of \(f\). The algorithm thus resembles a divide and conquer strategy and
is in particular easily parallelizable. Moreover, using a similar approach, we present an algorithm for computing syzygy modules over \(K\).
On the other hand, to compute Gröbner bases over \(K'\), our new algorithm first specializes the parameters \(t_1,\ldots,t_m\) to reduce the problem from \(K'[x_1,\ldots,x_n]\) to \(\mathbb{Q}[x_1,\ldots,x_n]\). The algorithm then computes a set of Gröbner bases of specialized ideals. From this set of Gröbner bases with coefficients in \(\mathbb{Q}\), it obtains a Gröbner basis of the input ideal using sparse multivariate rational interpolation.
At current state, these algorithms are probabilistic in the sense that, as for other modular Gröbner basis computations, an effective final verification test is only known for homogeneous ideals or for local monomial orderings. The presented timings show that for most examples, our algorithms, which have been implemented in SINGULAR [17], are considerably faster than other known methods.Dereje Kifle Bokudoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4428Wed, 10 Aug 2016 15:34:30 +0200Interest Rate Modeling - The Potential Approach and Multi-Curve Potential Models
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4420
This thesis is concerned with interest rate modeling by means of the potential approach. The contribution of this work is twofold. First, by making use of the potential approach and the theory of affine Markov processes, we develop a general class of rational models to the term structure of interest rates which we refer to as "the affine rational potential model". These models feature positive interest rates and analytical pricing formulae for zero-coupon bonds, caps, swaptions, and European currency options. We present some concrete models to illustrate the scope of the affine rational potential model and calibrate a model specification to real-world market data. Second, we develop a general family of "multi-curve potential models" for post-crisis interest rates. Our models feature positive stochastic basis spreads, positive term structures, and analytic pricing formulae for interest rate derivatives. This modeling framework is also flexible enough to accommodate negative interest rates and positive basis spreads.Anh-The Nguyendoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4420Fri, 05 Aug 2016 12:31:23 +0200The Bootstrap for the Functional Autoregressive Model FAR(1)
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4410
Functional data analysis is a branch of statistics that deals with observations \(X_1,..., X_n\) which are curves. We are interested in particular in time series of dependent curves and, specifically, consider the functional autoregressive process of order one (FAR(1)), which is defined as \(X_{n+1}=\Psi(X_{n})+\epsilon_{n+1}\) with independent innovations \(\epsilon_t\). Estimates \(\hat{\Psi}\) for the autoregressive operator \(\Psi\) have been investigated a lot during the last two decades, and their asymptotic properties are well understood. Particularly difficult and different from scalar- or vector-valued autoregressions are the weak convergence properties which also form the basis of the bootstrap theory.
Although the asymptotics for \(\hat{\Psi}{(X_{n})}\) are still tractable, they are only useful for large enough samples. In applications, however, frequently only small samples of data are available such that an alternative method for approximating the distribution of \(\hat{\Psi}{(X_{n})}\) is welcome. As a motivation, we discuss a real-data example where we investigate a changepoint detection problem for a stimulus response dataset obtained from the animal physiology group at the Technical University of Kaiserslautern.
To get an alternative for asymptotic approximations, we employ the naive or residual-based bootstrap procedure. In this thesis, we prove theoretically and show via simulations that the bootstrap provides asymptotically valid and practically useful approximations of the distributions of certain functions of the data. Such results may be used to calculate approximate confidence bands or critical bounds for tests.
Euna Gesare Nyarigedoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4410Wed, 06 Jul 2016 12:30:55 +0200Integrality of representations of finite groups
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4408
Since the early days of representation theory of finite groups in the 19th century, it was known that complex linear representations of finite groups live over number fields, that is, over finite extensions of the field of rational numbers.
While the related question of integrality of representations was answered negatively by the work of Cliff, Ritter and Weiss as well as by Serre and Feit, it was not known how to decide integrality of a given representation.
In this thesis we show that there exists an algorithm that given a representation of a finite group over a number field decides whether this representation can be made integral.
Moreover, we provide theoretical and numerical evidence for a conjecture, which predicts the existence of splitting fields of irreducible characters with integrality properties.
In the first part, we describe two algorithms for the pseudo-Hermite normal form, which is crucial when handling modules over ring of integers.
Using a newly developed computational model for ideal and element arithmetic in number fields, we show that our pseudo-Hermite normal form algorithms have polynomial running time.
Furthermore, we address a range of algorithmic questions related to orders and lattices over Dedekind domains, including computation of genera, testing local isomorphism, computation of various homomorphism rings and computation of Solomon zeta functions.
In the second part we turn to the integrality of representations of finite groups and show that an important ingredient is a thorough understanding of the reduction of lattices at almost all prime ideals.
By employing class field theory and tools from representation theory we solve this problem and eventually describe an algorithm for testing integrality.
After running the algorithm on a large set of examples we are led to a conjecture on the existence of integral and nonintegral splitting fields of characters.
By extending techniques of Serre we prove the conjecture for characters with rational character field and Schur index two.Tommy Hofmanndoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4408Mon, 04 Jul 2016 16:07:15 +0200Hecke algebras of type A: Auslander--Reiten quivers and branching rules
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4386
The thesis consists of two parts. In the first part we consider the stable Auslander--Reiten quiver of a block \(B\) of a Hecke algebra of the symmetric group at a root of unity in characteristic zero. The main theorem states that if the ground field is algebraically closed and \(B\) is of wild representation type, then the tree class of every connected component of the stable Auslander--Reiten quiver \(\Gamma_{s}(B)\) of \(B\) is \(A_{\infty}\). The main ingredient of the proof is a skew group algebra construction over a quantum complete intersection. Also, for these algebras the stable Auslander--Reiten quiver is computed in the case where the defining parameters are roots of unity. As a result, the tree class of every connected component of the stable Auslander--Reiten quiver is \(A_{\infty}\).\[\]
In the second part of the thesis we are concerned with branching rules for Hecke algebras of the symmetric group at a root of unity. We give a detailed survey of the theory initiated by I. Grojnowski and A. Kleshchev, describing the Lie-theoretic structure that the Grothendieck group of finite-dimensional modules over a cyclotomic Hecke algebra carries. A decisive role in this approach is played by various functors that give branching rules for cyclotomic Hecke algebras that are independent of the underlying field. We give a thorough definition of divided power functors that will enable us to reformulate the Scopes equivalence of a Scopes pair of blocks of Hecke algebras of the symmetric group. As a consequence we prove that two indecomposable modules that correspond under this equivalence have a common vertex. In particular, we verify the Dipper--Du Conjecture in the case where the blocks under consideration have finite representation type.Simon Schmiderdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4386Wed, 01 Jun 2016 15:32:16 +0200New Aspects of Inflation Modeling
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4381
Inflation modeling is a very important tool for conducting an efficient monetary policy. This doctoral thesis reviewed inflation models, in particular the Phillips curve models of inflation dynamics. We focused on a well known and widely used model, the so-called three equation new Keynesian model which is a system of equations consisting of a new Keynesian Phillips curve (NKPC), an investment and saving (IS) curve and an interest rate rule.
We gave a detailed derivation of these equations. The interest rate rule used in this model is normally determined by using a Lagrangian method to solve an optimal control problem constrained by a standard discrete time NKPC which describes the inflation dynamics and an IS curve that represents the output gaps dynamics. In contrast to the real world, this method assumes that the policy makers intervene continuously. This means that the costs resulting from the change in the interest rates are ignored. We showed also that there are approximation errors made, when one log-linearizes non linear equations, by doing the derivation of the standard discrete time NKPC.
We agreed with other researchers as mentioned in this thesis, that errors which result from ignoring such log-linear approximation errors and the costs of altering interest rates by determining interest rate rule, can lead to a suboptimal interest rate rule and hence to non-optimal paths of output gaps and inflation rate.
To overcome such a problem, we proposed a stochastic optimal impulse control method. We formulated the problem as a stochastic optimal impulse control problem by considering the costs of change in interest rates and the approximation error terms. In order to formulate this problem, we first transform the standard discrete time NKPC and the IS curve into their high-frequency versions and hence into their continuous time versions where error terms are described by a zero mean Gaussian white noise with a finite and constant variance. After formulating this problem, we use the quasi-variational inequality approach to solve analytically a special case of the central bank problem, where an inflation rate is supposed to be on target and a central bank has to optimally control output gap dynamics. This method gives an optimal control band in which output gap process has to be maintained and an optimal control strategy, which includes the optimal size of intervention and optimal intervention time, that can be used to keep the process into the optimal control band.
Finally, using a numerical example, we examined the impact of some model parameters on optimal control strategy. The results show that an increase in the output gap volatility as well as in the fixed and proportional costs of the change in interest rate lead to an increase in the width of the optimal control band. In this case, the optimal intervention requires the central bank to wait longer before undertaking another control action.François Sindamubaradoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4381Tue, 24 May 2016 15:03:18 +0200Recursive Utility and Stochastic Differential Utility: From Discrete to Continuous Time
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4380
In this thesis, mathematical research questions related to recursive utility and stochastic differential utility (SDU) are explored.
First, a class of backward equations under nonlinear expectations is investigated: Existence and uniqueness of solutions are established, and the issues of stability and discrete-time approximation are addressed. It is then shown that backward equations of this class naturally appear as a continuous-time limit in the context of recursive utility with nonlinear expectations.
Then, the Epstein-Zin parametrization of SDU is studied. The focus is on specifications with both relative risk aversion and elasitcity of intertemporal substitution greater that one. A concave utility functional is constructed and a utility gradient inequality is established.
Finally, consumption-portfolio problems with recursive preferences and unspanned risk are investigated. The investor's optimal strategies are characterized by a specific semilinear partial differential equation. The solution of this equation is constructed by a fixed point argument, and a corresponding efficient and accurate method to calculate optimal strategies numerically is given.Thomas Seiferlingdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4380Mon, 23 May 2016 10:55:22 +0200Utility-Based Risk Measures and Time Consistency of Dynamic Risk Measures
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4370
This thesis deals with risk measures based on utility functions and time consistency of dynamic risk measures. It is therefore aimed at readers interested in both, the theory of static and dynamic financial risk measures in the sense of Artzner, Delbaen, Eber and Heath [7], [8] and the theory of preferences in the tradition of von Neumann and Morgenstern [134].
A main contribution of this thesis is the introduction of optimal expected utility (OEU) risk measures as a new class of utility-based risk measures. We introduce OEU, investigate its main properties, and its applicability to risk measurement and put it in perspective to alternative risk measures and notions of certainty equivalents. To the best of our knowledge, OEU is the only existing utility-based risk measure that is (non-trivial and) coherent if the utility function u has constant relative risk aversion. We present several different risk measures that can be derived with special choices of u and illustrate that OEU reacts in a more sensitive way to slight changes of the probability of a financial loss than value at risk (V@R) and average value at risk.
Further, we propose implied risk aversion as a coherent rating methodology for retail structured products (RSPs). Implied risk aversion is based on optimal expected utility risk measures and, in contrast to standard V@R-based ratings, takes into account both the upside potential and the downside risks of such products. In addition, implied risk aversion is easily interpreted in terms of an individual investor's risk aversion: A product is attractive (unattractive) for an investor if its implied risk aversion is higher (lower) than his individual risk aversion. We illustrate this approach in a case study with more than 15,000 warrants on DAX ® and find that implied risk aversion is able to identify favorable products; in particular, implied risk aversion is not necessarily increasing with respect to the strikes of call warrants.
Another main focus of this thesis is on consistency of dynamic risk measures. To this end, we study risk measures on the space of distributions, discuss concavity on the level of distributions and slightly generalize Weber's [137] findings on the relation of time consistent dynamic risk measures to static risk measures to the case of dynamic risk measures with time-dependent parameters. Finally, this thesis investigates how recursively composed dynamic risk measures in discrete time, which are time consistent by construction, can be related to corresponding dynamic risk measures in continuous time. We present different approaches to establish this link and outline the theoretical basis and the practical benefits of this relation. The thesis concludes with a numerical implementation of this theory.Sebastian Geisseldoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4370Tue, 17 May 2016 10:22:33 +0200Linear diffusions conditioned on long-term survival
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4311
We investigate the long-term behaviour of diffusions on the non-negative real numbers under killing at some random time. Killing can occur at zero as well as in the interior of the state space. The diffusion follows a stochastic differential equation driven by a Brownian motion. The diffusions we are working with will almost surely be killed. In large parts of this thesis we only assume the drift coefficient to be continuous. Further, we suppose that zero is regular and that infinity is natural. We condition the diffusion on survival up to time t and let t tend to infinity looking for a limiting behaviour. Martin Andersdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4311Thu, 03 Mar 2016 11:45:00 +0100Advantage of Filtering for Portfolio Optimization in Financial Markets with Partial Information
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4282
In a financial market we consider three types of investors trading with a finite
time horizon with access to a bank account as well as multliple stocks: the
fully informed investor, the partially informed investor whose only source of
information are the stock prices and an investor who does not use this infor-
mation. The drift is modeled either as following linear Gaussian dynamics
or as being a continuous time Markov chain with finite state space. The
optimization problem is to maximize expected utility of terminal wealth.
The case of partial information is based on the use of filtering techniques.
Conditions to ensure boundedness of the expected value of the filters are
developed, in the Markov case also for positivity. For the Markov modulated
drift, boundedness of the expected value of the filter relates strongly to port-
folio optimization: effects are studied and quantified. The derivation of an
equivalent, less dimensional market is presented next. It is a type of Mutual
Fund Theorem that is shown here.
Gains and losses eminating from the use of filtering are then discussed in
detail for different market parameters: For infrequent trading we find that
both filters need to comply with the boundedness conditions to be an advan-
tage for the investor. Losses are minimal in case the filters are advantageous.
At an increasing number of stocks, again boundedness conditions need to be
met. Losses in this case depend strongly on the added stocks. The relation
of boundedness and portfolio optimization in the Markov model leads here to
increasing losses for the investor if the boundedness condition is to hold for
all numbers of stocks. In the Markov case, the losses for different numbers
of states are negligible in case more states are assumed then were originally
present. Assuming less states leads to high losses. Again for the Markov
model, a simplification of the complex optimal trading strategy for power
utility in the partial information setting is shown to cause only minor losses.
If the market parameters are such that shortselling and borrowing constraints
are in effect, these constraints may lead to big losses depending on how much
effect the constraints have. They can though also be an advantage for the
investor in case the expected value of the filters does not meet the conditions
for boundedness.
All results are implemented and illustrated with the corresponding numerical
findings.Leonie Rudererdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4282Fri, 15 Jan 2016 09:45:44 +0100Isogeometric finite element methods for shape optimization
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4264
In this thesis we develop a shape optimization framework for isogeometric analysis in the optimize first–discretize then setting. For the discretization we use
isogeometric analysis (iga) to solve the state equation, and search optimal designs in a space of admissible b-spline or nurbs combinations. Thus a quite
general class of functions for representing optimal shapes is available. For the
gradient-descent method, the shape derivatives indicate both stopping criteria and search directions and are determined isogeometrically. The numerical treatment requires solvers for partial differential equations and optimization methods, which introduces numerical errors. The tight connection between iga and geometry representation offers new ways of refining the geometry and analysis discretization by the same means. Therefore, our main concern is to develop the optimize first framework for isogeometric shape optimization as ground work for both implementation and an error analysis. Numerical examples show that this ansatz is practical and case studies indicate that it allows local refinement.Daniela Fußederdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4264Thu, 07 Jan 2016 14:50:15 +0100The Inductive Blockwise Alperin Weight Condition for the Finite Groups \( SL_3(q) \) \( (3 \nmid (q-1)) \), \( G_2(q) \) and \( ^3D_4(q) \)
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4225
The central topic of this thesis is Alperin's weight conjecture, a problem concerning the representation theory of finite groups.
This conjecture, which was first proposed by J. L. Alperin in 1986, asserts that for any finite group the number of its irreducible Brauer characters coincides with the number of conjugacy classes of its weights. The blockwise version of Alperin's conjecture partitions this problem into a question concerning the number of irreducible Brauer characters and weights belonging to the blocks of finite groups.
A proof for this conjecture has not (yet) been found. However, the problem has been reduced to a question on non-abelian finite (quasi-) simple groups in the sense that there is a set of conditions, the so-called inductive blockwise Alperin weight condition, whose verification for all non-abelian finite simple groups implies the blockwise Alperin weight conjecture. Now the objective is to prove this condition for all non-abelian finite simple groups, all of which are known via the classification of finite simple groups.
In this thesis we establish the inductive blockwise Alperin weight condition for three infinite series of finite groups of Lie type: the special linear groups \(SL_3(q)\) in the case \(q>2\) and \(q \not\equiv 1 \bmod 3\), the Chevalley groups \(G_2(q)\) for \(q \geqslant 5\), and Steinberg's triality groups \(^3D_4(q)\).Elisabeth Schultedoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4225Mon, 09 Nov 2015 11:04:50 +0100Representative Systems and Decision Support for Multicriteria Optimization Problems
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4220
In this thesis, we investigate several upcoming issues occurring in the context of conceiving and building a decision support system. We elaborate new algorithms for computing representative systems with special quality guarantees, provide concepts for supporting the decision makers after a representative system was computed, and consider a methodology of combining two optimization problems.
We review the original Box-Algorithm for two objectives by Hamacher et al. (2007) and discuss several extensions regarding coverage, uniformity, the enumeration of the whole nondominated set, and necessary modifications if the underlying scalarization problem cannot be solved to optimality. In a next step, the original Box-Algorithm is extended to the case of three objective functions to compute a representative system with desired coverage error. Besides the investigation of several theoretical properties, we prove the correctness of the algorithm, derive a bound on the number of iterations needed by the algorithm to meet the desired coverage error, and propose some ideas for possible extensions.
Furthermore, we investigate the problem of selecting a subset with desired cardinality from the computed representative system, the Hypervolume Subset Selection Problem (HSSP). We provide two new formulations for the bicriteria HSSP, a linear programming formulation and a \(k\)-link shortest path formulation. For the latter formulation, we propose an algorithm for which we obtain the currently best known complexity bound for solving the bicriteria HSSP. For the tricriteria HSSP, we propose an integer programming formulation with a corresponding branch-and-bound scheme.
Moreover, we address the issue of how to present the whole set of computed representative points to the decision makers. Based on common illustration methods, we elaborate an algorithm guiding the decision makers in choosing their preferred solution.
Finally, we step back and look from a meta-level on the issue of how to combine two given optimization problems and how the resulting combinations can be related to each other. We come up with several different combined formulations and give some ideas for the practical approach.Tobias Kuhndoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4220Thu, 05 Nov 2015 08:54:53 +0100Application of the Finite Pointset Method to moving boundary problems for the BGK model of rarefied gas dynamics
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4182
The overall goal of the work is to simulate rarefied flows inside geometries with moving boundaries. The behavior of a rarefied flow is characterized through the Knudsen number \(Kn\), which can be very small (\(Kn < 0.01\) continuum flow) or larger (\(Kn > 1\) molecular flow). The transition region (\(0.01 < Kn < 1\)) is referred to as the transition flow regime.
Continuum flows are mainly simulated by using commercial CFD methods, which are used to solve the Euler equations. In the case of molecular flows one uses statistical methods, such as the Direct Simulation Monte Carlo (DSMC) method. In the transition region Euler equations are not adequate to model gas flows. Because of the rapid increase of particle collisions the DSMC method tends to fail, as well
Therefore, we develop a deterministic method, which is suitable to simulate problems of rarefied gases for any Knudsen number and is appropriate to simulate flows inside geometries with moving boundaries. Thus, the method we use is the Finite Pointset Method (FPM), which is a mesh-free numerical method developed at the ITWM Kaiserslautern and is mainly used to solve fluid dynamical problems.
More precisely, we develop a method in the FPM framework to solve the BGK model equation, which is a simplification of the Boltzmann equation. This equation is mainly used to describe rarefied flows.
The FPM based method is implemented for one and two dimensional physical and velocity space and different ranges of the Knudsen number. Numerical examples are shown for problems with moving boundaries. It is seen, that our method is superior to regular grid methods with respect to the implementation of boundary conditions. Furthermore, our results are comparable to reference solutions gained through CFD- and DSMC methods, respectevly.Maria Kobertdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4182Mon, 28 Sep 2015 08:22:27 +0200American-style Option Pricing and Improvement of Regression-based Monte Carlo Methods by Machine Learning Techniques
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4172
In this dissertation, we discuss how to price American-style options. Our aim is to study and improve the regression-based Monte Carlo methods. In order to have good benchmarks to compare with them, we also study the tree methods.
In the second chapter, we investigate the tree methods specifically. We do research firstly within the Black-Scholes model and then within the Heston model. In the Black-Scholes model, based on Müller's work, we illustrate how to price one dimensional and multidimensional American options, American Asian options, American lookback options, American barrier options and so on. In the Heston model, based on Sayer's research, we implement his algorithm to price one dimensional American options. In this way, we have good benchmarks of various American-style options and put them all in the appendix.
In the third chapter, we focus on the regression-based Monte Carlo methods theoretically and numerically. Firstly, we introduce two variations, the so called "Tsitsiklis-Roy method" and the "Longstaff-Schwartz method". Secondly, we illustrate the approximation of American option by its Bermudan counterpart. Thirdly we explain the source of low bias and high bias. Fourthly we compare these two methods using in-the-money paths and all paths. Fifthly, we examine the effect using different number and form of basis functions. Finally, we study the Andersen-Broadie method and present the lower and upper bounds.
In the fourth chapter, we study two machine learning techniques to improve the regression part of the Monte Carlo methods: Gaussian kernel method and kernel-based support vector machine. In order to choose a proper smooth parameter, we compare fixed bandwidth, global optimum and suboptimum from a finite set. We also point out that scaling the training data to [0,1] can avoid numerical difficulty. When out-of-sample paths of stock prices are simulated, the kernel method is robust and even performs better in several cases than the Tsitsiklis-Roy method and the Longstaff-Schwartz method. The support vector machine can keep on improving the kernel method and needs less representations of old stock prices during prediction of option continuation value for a new stock price.
In the fifth chapter, we switch to the hardware (FGPA) implementation of the Longstaff-Schwartz method and propose novel reversion formulas for the stock price and volatility within the Black-Scholes and Heston models. The test for this formula within the Black-Scholes model shows that the storage of data is reduced and also the corresponding energy consumption.Songyin Tangdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4172Mon, 14 Sep 2015 09:21:08 +0200Tropical Geometry in Singular
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4169
Yue Rendoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4169Wed, 09 Sep 2015 10:34:35 +0200Stochastic Modeling and Approximation of Turbulent Spinning Processes
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4168
In some processes for spinning synthetic fibers the filaments are exposed to highly turbulent air flows to achieve a high degree of stretching (elongation). The quality of the resulting filaments, namely thickness and uniformity, is thus determined essentially by the aerodynamic force coming from the turbulent flow. Up to now, there is a gap between the elongation measured in experiments and the elongation obtained by numerical simulations available in the literature.
The main focus of this thesis is the development of an efficient and sufficiently accurate simulation algorithm for the velocity of a turbulent air flow and the application in turbulent spinning processes.
In stochastic turbulence models the velocity is described by an \(\mathbb{R}^3\)-valued random field. Based on an appropriate description of the random field by Marheineke, we have developed an algorithm that fulfills our requirements of efficiency and accuracy. Applying a resulting stochastic aerodynamic drag force on the fibers then allows the simulation of the fiber dynamics modeled by a random partial differential algebraic equation system as well as a quantization of the elongation in a simplified random ordinary differential equation model for turbulent spinning. The numerical results are very promising: whereas the numerical results available in the literature can only predict elongations up to order \(10^4\) we get an order of \(10^5\), which is closer to the elongations of order \(10^6\) measured in experiments.Florian Hübschdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4168Tue, 01 Sep 2015 13:27:20 +0200Construction of a Mittag-Leffler Analysis and its Applications
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4157
Motivated by the results of infinite dimensional Gaussian analysis and especially white noise analysis, we construct a Mittag-Leffler analysis. This is an infinite dimensional analysis with respect to non-Gaussian measures of Mittag-Leffler type which we call Mittag-Leffler measures. Our results indicate that the Wick ordered polynomials, which play a key role in Gaussian analysis, cannot be generalized to this non-Gaussian case. We provide evidence that a system of biorthogonal polynomials, called generalized Appell system, is applicable to the Mittag-Leffler measures, instead of using Wick ordered polynomials. With the help of an Appell system, we introduce a test function and a distribution space. Furthermore we give characterizations of the distribution space and we characterize the weak integrable functions and the convergent sequences within the distribution space. We construct Donsker's delta in a non-Gaussian setting as an application.
In the second part, we develop a grey noise analysis. This is a special application of the Mittag-Leffler analysis. In this framework, we introduce generalized grey Brownian motion and prove differentiability in a distributional sense and the existence of generalized grey Brownian motion local times. Grey noise analysis is then applied to the time-fractional heat equation and the time-fractional Schrödinger equation. We prove a generalization of the fractional Feynman-Kac formula for distributional initial values. In this way, we find a Green's function for the time-fractional heat equation which coincides with the solutions given in the literature.
Florian Jahnertdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4157Tue, 18 Aug 2015 08:32:00 +0200Aspects and Applications of the Wilkie Investment Model
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4137
The Wilkie model is a stochastic asset model, developed by A.D. Wilkie in 1984 with a purpose to explore the behaviour of investment factors of insurers within the United Kingdom. Even so, there is still no analysis that studies the Wilkie model in a portfolio optimization framework thus far. Originally, the Wilkie model is considering a discrete-time horizon and we apply the concept of Wilkie model to develop a suitable ARIMA model for Malaysian data by using Box-Jenkins methodology. We obtained the estimated parameters for each sub model within the Wilkie model that suits the case of Malaysia, and permits us to analyse the result based on statistics and economics view. We then tend to review the continuous time case which was initially introduced by Terence Chan in 1998. The continuous-time Wilkie model inspired is then being employed to develop the wealth equation of a portfolio that consists of a bond and a stock. We are interested in building portfolios based on three well-known trading strategies, a self-financing strategy, a constant growth optimal strategy as well as a buy-and-hold strategy. In dealing with the portfolio optimization problems, we use the stochastic control technique consisting of the maximization problem itself, the Hamilton-Jacobi-equation, the solution to the Hamilton-Jacobi-equation and finally the verification theorem. In finding the optimal portfolio, we obtained the specific solution of the Hamilton-Jacobi-equation and proved the solution via the verification theorem. For a simple buy-and-hold strategy, we use the mean-variance analysis to solve the portfolio optimization problem.
Norizarina Ishakdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4137Tue, 11 Aug 2015 11:06:03 +0200