KLUEDO RSS FeedNeueste Dokumente / Latest documents
https://kluedo.ub.uni-kl.de/index/index/
Wed, 30 Mar 2011 08:52:38 +0200Wed, 30 Mar 2011 08:52:38 +0200Optimal Investment for a Large Investor in a Regime-Switching Model
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2305
In the classical Merton investment problem of maximizing the expected utility from terminal wealth and intermediate consumption stock prices are independent of the investor who is optimizing his investment strategy. This is reasonable as long as the considered investor is small and thus does not influence the asset prices. However for an investor whose actions may affect the financial market the framework of the classical investment problem turns out to be inappropriate. In this thesis we provide a new approach to the field of large investor models. We study the optimal investment problem of a large investor in a jump-diffusion market which is in one of two states or regimes. The investor’s portfolio proportions as well as his consumption rate affect the intensity of transitions between the different regimes. Thus the investor is ’large’ in the sense that his investment decisions are interpreted by the market as signals: If, for instance, the large investor holds 25% of his wealth in a certain asset then the market may regard this as evidence for the corresponding asset to be priced incorrectly, and a regime shift becomes likely. More specifically, the large investor as modeled here may be the manager of a big mutual fund, a big insurance company or a sovereign wealth fund, or the executive of a company whose stocks are in his own portfolio. Typically, such investors have to disclose their portfolio allocations which impacts on market prices. But even if a large investor does not disclose his portfolio composition as it is the case of several hedge funds then the other market participants may speculate about the investor’s strategy which finally could influence the asset prices. Since the investor’s strategy only impacts on the regime shift intensities the asset prices do not necessarily react instantaneously. Our model is a generalization of the two-states version of the Bäuerle-Rieder model. Hence as the Bäuerle-Rieder model it is suitable for long investment periods during which market conditions could change. The fact that the investor’s influence enters the intensities of the transitions between the two states enables us to solve the investment problem of maximizing the expected utility from terminal wealth and intermediate consumption explicitly. We present the optimal investment strategy for a large investor with CRRA utility for three different kinds of strategy-dependent regime shift intensities – constant, step and affine intensity functions. In each case we derive the large investor’s optimal strategy in explicit form only dependent on the solution of a system of coupled ODEs of which we show that it admits a unique global solution. The thesis is organized as follows. In Section 2 we repeat the classical Merton investment problem of a small investor who does not influence the market. Further the Bäuerle-Rieder investment problem in which the market states follow a Markov chain with constant transition intensities is discussed. Section 3 introduces the aforementioned investment problem of a large investor. Besides the mathematical framework and the HJB-system we present a verification theorem that is necessary to verify the optimality of the solutions to the investment problem that we derive later on. The explicit derivation of the optimal investment strategy for a large investor with power utility is given in Section 4. For three kinds of intensity functions – constant, step and affine – we give the optimal solution and verify that the corresponding ODE-system admits a unique global solution. In case of the strategy-dependent intensity functions we distinguish three particular kinds of this dependency – portfolio-dependency, consumption-dependency and combined portfolio- and consumption-dependency. The corresponding results for an investor having logarithmic utility are shown in Section 5. In the subsequent Section 6 we consider the special case of a market consisting of only two correlated stocks besides the money market account. We analyze the investor’s optimal strategy when only the position in one of those two assets affects the market state whereas the position in the other asset is irrelevant for the regime switches. Various comparisons of the derived investment problems are presented in Section 7. Besides the comparisons of the particular problems with each other we also dwell on the sensitivity of the solution concerning the parameters of the intensity functions. Finally we consider the loss the large investor had to face if he neglected his influence on the market. In Section 8 we conclude the thesis.Michael Buschdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2305Wed, 30 Mar 2011 08:52:38 +0200Optimal Portfolios for Executive Stockholders
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2244
In this work, we develop a framework for analyzing an executive’s own- company stockholding and work effort preferences. The executive, character- ized by risk aversion and work effectiveness parameters, invests his personal wealth without constraint in the financial market, including the stock of his own company whose value he can directly influence with work effort. The executive’s utility-maximizing personal investment and work effort strategy is derived in closed form for logarithmic and power utility and for exponential utility for the case of zero interest rates. Additionally, a utility indifference rationale is applied to determine his fair compensation. Being unconstrained by performance contracting, the executive’s work effort strategy establishes a base case for theoretical or empirical assessment of the benefits or otherwise of constraining executives with performance contracting. Further, we consider a highly-qualified individual with respect to her choice between two distinct career paths. She can choose between a mid-level management position in a large company and an executive position within a smaller listed company with the possibility to directly affect the company’s share price. She invests in the financial market including the share of the smaller listed company. The utility maximizing strategy from consumption, investment, and work effort is derived in closed form for logarithmic utility and power utility. Conditions for the individual to pursue her career with the smaller listed company are obtained. The participation constraint is formulated in terms of the salary differential between the two positions. The smaller listed company can offer less salary. The salary shortfall is offset by the possibilityto benefit from her work effort by acquiring own-company shares. This givesinsight into aspects of optimal contract design. Our framework is applicable to the pharmaceutical and financial industry, as well as the IT sector.Sascha Desmettredoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2244Mon, 18 Oct 2010 10:55:19 +0200Optimal Investment in the Face of Adversity: Taxes, Crashes, and Illiquidity
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2147
This thesis deals with 3 important aspects of optimal investment in real-world financial markets: taxes, crashes, and illiquidity. An introductory chapter reviews the portfolio problem in its historical context and motivates the theme of this work: We extend the standard modelling framework to include specific real-world features and evaluate their significance. In the first chapter, we analyze the optimal portfolio problem with capital gains taxes, assuming that taxes are deferred until the end of the investment horizon. The problem is solved with the help of a modification of the classical martingale method. The second chapter is concerned with optimal asset allocation under the threat of a financial market crash. The investor takes a worst-case attitude towards the crash, so her investment objective is to be best off in the most adverse crash scenario. We first survey the existing literature on the worst-case approach to optimal investment and then present in detail the novel martingale approach to worst-case portfolio optimization. The first part of this chapter is based on joint work with Ralf Korn. In the last chapter, we investigate optimal portfolio decisions in the presence of illiquidity. Illiquidity is understood as a period in which it is impossible to trade on financial markets. We use dynamic programming techniques in combination with abstract convergence results to solve the corresponding optimal investment problem. This chapter is based on joint work with Holger Kraft and Peter Diesinger.Frank Thomas Seifrieddoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2147Thu, 22 Oct 2009 11:46:38 +0200Stochastic Impulse Control and Asset Allocation with Liquidity Breakdowns
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2099
Continuous stochastic control theory has found many applications in optimal investment. However, it lacks some reality, as it is based on the assumption that interventions are costless, which yields optimal strategies where the controller has to intervene at every time instant. This thesis consists of the examination of two types of more realistic control methods with possible applications. In the first chapter, we study the stochastic impulse control of a diffusion process. We suppose that the controller minimizes expected discounted costs accumulating as running and controlling cost, respectively. Each control action causes costs which are bounded from below by some positive constant. This makes a continuous control impossible as it would lead to an immediate ruin of the controller. We give a rigorous development of the relevant theory, where our guideline is to establish verification and convergence results under minimal assumptions, without focusing on the existence of solutions to the corresponding (quasi-)variational inequalities. If the impulse control problem can be characterized or approximated by (quasi-)variational inequalities, it remains to solve these equations. In Section 1.2, we solve the stochastic impulse control problem for a one-dimensional diffusion process with constant coefficients and convex running costs. Further, in Section 1.3, we solve a particular multi-dimensional example, where the uncontrolled process is given by an at least two-dimensional Brownian motion and the cost functions are rotationally symmetric. By symmetry, this problem can be reduced to a one-dimensional problem. In the last section of the first chapter, we suggest a new impulse control problem, where the controller is in addition allowed to invest his initial capital into a market consisting of a money market account and a risky asset. The costs which arise upon controlling the diffusion process and upon trading in this market have to be paid out of the controller's bond holdings. The aim of the controller is to minimize the running costs, caused by the abstract diffusion process, without getting ruined. The second chapter is based on a paper which is joint work with Holger Kraft and Frank Seifried. We analyze the portfolio decision of an investor trading in a market where the economy switches randomly between two possible states, a normal state where trading takes place continuously, and an illiquidity state where trading is not allowed at all. We allow for jumps in the market prices at the beginning and at the end of a trading interruption. Section 2.1 provides an explicit representation of the investor's portfolio dynamics in the illiquidity state in an abstract market consisting of two assets. In Section 2.2 we specify this market model and assume that the investor maximizes expected utility from terminal wealth. We establish convergence results, if the maximal number of liquidity breakdowns goes to infinity. In the Markovian framework of Section 2.3, we provide the corresponding Hamilton-Jacobi-Bellman equations and prove a verification result. We apply these results to study the portfolio problem for a logarithmic investor and an investor with a power utility function, respectively. Further, we extend this model to an economy with three regimes. For instance, the third state could model an additional financial crisis where trading is still possible, but the excess return is lower and the volatility is higher than in the normal state.Peter Diesingerdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2099Fri, 29 May 2009 09:46:46 +0200Neue Aspekte der Portfolio-Optimierung und der Modellierung von Bondindizes
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1875
Zwei zentrale Probleme der modernen Finanzmathematik sind die Portfolio-Optimierung und die Optionsbewertung. Während es bei der Portfolio-Optimierung darum geht, das Vermögen optimal auf verschiedene Anlagemöglichkeiten zu verteilen, versucht die Optionsbewertung faire Preise von derivativen Finanzinstrumenten zu bestimmen. In dieser Arbeit werden Fragestellungen aus beiden dieser Themenbereiche bearbeitet. Die Arbeit beginnt mit einem Kapitel über Grundlagen, in dem zum Beispiel das Portfolio-Problem von Merton dargestellt und die Black/Scholes-Formel zur Optionsbewertung hergeleitet wird. In Kapitel 2 wird das Portfolio-Problem von Morton und Pliska betrachtet, die in das Merton-Modell fixe Transaktionskosten eingeführt haben. Dabei muß der Investor bei jeder Transaktion einen fixen Anteil vom derzeitigen Vermögen als Kosten abführen. Es wird die asymptotische Approximation dieses Modells von Atkinson und Wilmott vorgestellt und die optimale Portfoliostrategie aus den Marktparametern hergeleitet. Danach werden die tatsächlichen Transaktionskosten abgeschätzt und ein User Guide zur praktischen Anwendung dieses Transaktionskostenmodells angegeben. Zum Schluß wird das Modell numerisch analysiert, indem unter anderem die erwartete Handelszeit und die Güte der Abschätzung der tatsächlichen Transaktionskosten berechnet werden. Ein Portfolio-Problem mit internationalen Märkten wird in Kapitel 3 vorgestellt. Dem Investor steht zusätzlich zu seinem Heimatland noch ein weiteres Land für seine Vermögensanlagen zur Verfügung. Dabei werden die Preisprozesse für die ausländischen Wertpapiere mit einem stochastischen Wechselkurs in die Heimatwährung umgerechnet. In einer statischen Analyse wird unter anderem berechnet, wieviel weniger Vermögen der Investor benötigt, um das gleiche erwartete Endvermögen zu erhalten wie in dem Fall, wenn ihm keine Auslandsanlagen zur Verfügung stehen. Kapitel 4 behandelt drei verschiedene Portfolio-Probleme mit Sprung-Diffusions-Prozessen. Nach der Herleitung eines Verifikationssatzes wird das Problem bei Anlagemöglichkeit in eine Aktie und in ein Geldmarktkonto jeweils für eine konstante und eine stochastische Zinsrate untersucht. Im ersten Fall wird eine implizite Darstellung für den optimalen Portfolioprozeß und eine Bedingung angegeben, unter der diese Darstellung eindeutig lösbar ist. Außerdem wird der optimale Portfolioprozeß für verschiedene Verteilungen für die Sprunghöhe untersucht. Im Falle einer stochastischen Zinsrate kann nur ein Kandidat für den optimalen Lösungsprozeß angeben werden. Dieser hat wieder eine implizite Darstellung. Das letzte Portfolio-Problem ist eine Abwandlung des Modells aus Kapitel 3. Wird dort der Wechselkurs durch eine geometrisch Brownsche Bewegung modelliert, ist er hier ein reiner Sprungprozeß. Es wird wieder der optimale Portfolioprozeß hergeleitet, wobei ein Anteil davon unter Umständen nur numerisch lösbar ist. Eine hinreichende Bedingung für die Lösbarkeit wird angegeben. In Kapitel 5 werden verschiedene Bewertungsansätze für Optionen auf Bondindizes präsentiert. Es wird eine Methode vorgestellt, mit der die Optionen anhand von Marktpreisen bewertet werden können. Für den Fall, daß es nicht genug Marktpreise gibt, wird ein Verfahren angegeben, um den Bondindex realitätsnah zu simulieren und künstliche Marktpreise zu erzeugen. Diese Preise können dann für eine Kalibrierung verwendet werden.Tin-Kwai Mandoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1875Tue, 26 Jun 2007 14:41:22 +0200Some new aspects of Optimal Portfolios and Option Pricing
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1410
The main two problems of continuous-time financial mathematics are option pricing and portfolio optimization. In this thesis, various new aspects of these major topics of financial mathematics will be discussed. In all our considerations we will assume the standard diffusion type setting for securitiy prices which is today well-know under the term "Black-Scholes model". This setting and the basic results of option pricing and portfolio optimization are surveyed in the first chapter. The next three chapters deal with generalizations of the standard portfolio problem, also know as "Merton's problem". Here, we will always use the stochastic control approach as introduced in the seminal papers by Merton (1969, 1971, 1990). One such problem is the very realistic setting of an investor who is faced with fixed monetary streams. More precisely, in addition to maximizing the utility from final wealth via choosing an investment strategy, the investor also has to fulfill certain consumption needs. Also the opposite situation, an additional income stream can now be taken into account in our portfolio optimization problem. We consider various examples and solve them on one hand via classical stochastic control methods and on the other hand by our new separation theorem. This together with some numerical examples forms Chapter 2. Chapter 3 is mainly concerned with the portfolio problem if the investor has different lending and borrowing rates. We give explicit solutions (where possible) and numerical methods to calculate the optimal strategy in the cases of log utility and HARA utility for three different modelling approaches of the dependence of the borrowing rate on the fraction of wealth financed by a credit. The further generalization of the standard Merton problem in Chapter 4 consists in considering simultaneously the possibilities for continuous and discrete consumption. In our general approach there is a possibility for assigning the different consumption times different weights which is a generalization of the usual way of making them comparable via discounting. Chapter 5 deals with the special case of pricing basket options. Here, the main problem is not path-dependence but the multi-dimensionality which makes it impossible to give usuefull analytical representations of the option price. We review the literature and compare six different numerical methods in a systematic way. Thereby we also look at the influence of various parameters such as strike, correlation, forwards or volatilities on the erformance of the different numerical methods. The problem of pricing Asian options on average spot with average strike is the topic of Chapter 6. We here apply the bivariate normal distribution to obtain an approximate option price. This method proves to be very reliable and e±cient for the valuation of different variants of Asian options on average spot with average strike.Martin Krekeldoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1410Tue, 08 Jul 2003 10:30:45 +0200Some Applications of Impulse Control in Mathematical Finance
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1143
We consider three applications of impulse control in financial mathematics, a cash management problem, optimal control of an exchange rate, and portfolio optimisation under transaction costs. We sketch the different ways of solving these problems with the help of quasi-variational inequalities. Further, some viscosity solution results are presented.Ralf Kornpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1143Wed, 04 Oct 2000 00:00:00 +0200On value preserving and growth optimal portfolios
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1133
In a discrete-time financial market setting, the paper relates various concepts introduced for dynamic portfolios (both in discrete and in continuous time). These concepts are: value preserving portfolios, numeraire portfolios, interest oriented portfolios, and growth optimal portfolios. It will turn out that these concepts are all associated with a unique martingale measure which agrees with the minimal martingale measure only for complete markets.Ralf Korn; Manfred Schälpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1133Tue, 29 Aug 2000 00:00:00 +0200