KLUEDO RSS FeedNeueste Dokumente / Latest documents
https://kluedo.ub.uni-kl.de/index/index/
Fri, 16 Mar 2007 13:58:37 +0100Fri, 16 Mar 2007 13:58:37 +0100Pareto Navigation - Interactive multiobjective optimisation and its application in radiotherapy planning
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1847
This thesis introduces so-called cone scalarising functions. They are by construction compatible with a partial order for the outcome space given by a cone. The quality of the parametrisations of the efficient set given by the cone scalarising functions are then investigated. Here, the focus lies on the (weak) efficiency of the generated solutions, the reachability of effiecient points and continuity of the solution set. Based on cone scalarising functions Pareto Navigation a novel, interactive, multiobjective optimisation method is proposed. It changes the ordering cone to realise bounds on partial tradeoffs. Besides, its use of an equality constraint for the changing component of the reference point is a new feature. The efficiency of its solutions, the reachability of efficient solutions and continuity is then analysed. Potential problems are demonstrated using a critical example. Furthermore, the use of Pareto Navigation in a two-phase approach and for nonconvex problems is discussed. Finally, its application for intensity-modulated radiotherapy planning is described. Thereby, its realisation in a graphical user interface is shown.Michael Monzdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1847Fri, 16 Mar 2007 13:58:37 +0100A Level Set Method for Multiobjective Combinatorial Optimization: Application to the Quadratic Assignment Problem
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1352
Multiobjective combinatorial optimization problems have received increasing attention in recent years. Nevertheless, many algorithms are still restricted to the bicriteria case. In this paper we propose a new algorithm for computing all Pareto optimal solutions. Our algorithm is based on the notion of level sets and level curves and contains as a subproblem the determination of K best solutions for a single objective combinatorial optimization problem. We apply the method to the Multiobjective Quadratic Assignment Problem (MOQAP). We present two algorithms for ranking QAP solutions and nally give computational results comparing the methods.Matthias Ehrgott; Thomas Stephan; Dagmar Tenfelde-Podehlpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1352Tue, 15 Oct 2002 22:29:00 +0200Saddle Points and Pareto Points in Multiple Objective Programming
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/504
In this paper relationships between Pareto points and saddle points in multiple objective programming are investigated. Convex and nonconvex problems are considered and the equivalence between Pareto points and saddle points is proved in both cases. The results are based on scalarizations of multiple objective programs and related linear and augmented Lagrangian functions. Partitions of the index sets of objectives and constranints are introduced to reduce the size of the problems. The relevance of the results in the context of decision making is also discussed.Matthias Ehrgott; Margaret M. Wiecekpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/504Mon, 03 Apr 2000 00:00:00 +0200Approximation Algorithms for Combinatorial Multicriteria Optimization Problems
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/512
The computational complexity of combinatorial multiple objective programming problems is investigated. NP-completeness and #P-completeness results are presented. Using two definitions of approximability, general results are presented, which outline limits for approximation algorithms. The performance of the well known tree and Christofides' heuristics for the TSP is investigated in the multicriteria case with respect to the two definitions of approximability.Matthias Ehrgottpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/512Mon, 03 Apr 2000 00:00:00 +0200Convex Operators in Vector Optimization: Directional Derivatives and the Cone of Decrease Directions
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/514
The paper is devoted to the investigation of directional derivatives and the cone of decrease directions for convex operators on Banach spaces. We prove a condition for the existence of directional derivatives which does not assume regularity of the ordering cone K. This result is then used to prove that for continuous convex operators the cone of decrease directions can be represented in terms of the directional derivatices . Decrease directions are those for which the directional derivative lies in the negative interior of the ordering cone K. Finally, we show that the continuity of the convex operator can be replaced by its K-boundedness.Alexander L. Topchishvili; Vilhelm G. Maisuradze; Matthias Ehrgottpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/514Mon, 03 Apr 2000 00:00:00 +0200