KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Tue, 24 Feb 2009 21:36:32 +0100Tue, 24 Feb 2009 21:36:32 +0100Model Reduction of Nonlinear Problems in Structural Mechanics: Towards a Finite Element Tyre Model for Multibody Simulation
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2061
This thesis shows an approach to combine the advantages of MBS tyre models and FEM models for the use in full vehicle simulations. The procedure proposed in this thesis aims to describe a nonlinear structure with a Finite Element approach combined with nonlinear model reduction methods. Unlike most model reduction methods - as the frequently used Craig-Bampton approach - the method of Proper Orthogonal Decomposition (POD) offers a projection basis suitable for nonlinear models. For the linear wave equation, the POD method is studied comparing two different choices of snapshot sets. Set 1 consists of deformation snapshots, and set 2 additionally contains velocities and accelerations. An error analysis proves no convergence guarantee for deformations only. For inclusion of derivatives it yields an error bound diminishing for small time steps. The numerical results show a better behaviour for the derivative snapshot method, as long as the sum of the left-over eigenvalues is significant. For the reduction of nonlinear systems - especially when using commercial software - it is necessary to decouple the reduced surrogate system from the full model. To achieve this, a lookup table approach is presented. It makes use of the preceding computation step with the full model necessary to set up the POD basis (training step). The nonlinear term of inner forces and the stiffness matrix are output and stored in a lookup table for the reduced system. Numerical examples include a nonlinear string in Matlab and an airspring computed in Abaqus. Both examples show that effort reductions of two orders of magnitude are possible within a reasonable error tolerance. The lookup approaches perform faster than the Trajectory Piecewise Linear (TPWL) method and produce comparable errors. Furthermore, the Abaqus example shows the influence of training excitation on the quality of the reduced model.Sabrina Herktdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2061Tue, 24 Feb 2009 21:36:32 +0100Frontiers in Inelastic Continuum Mechanics
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1896
The main goal of this work is to examine various aspects of `inelastic continuum mechanics': first, fundamental aspects of a general finite deformation theory based on a multiplicative decomposition of the deformation gradient with special emphasis on the incompatibility of the so-called intermediate configuration are discussed in detail. Moreover, various balance of linear momentum representations together with the corresponding volume forces are derived in a configurational mechanics context. Subsequent chapters are consequently based on these elaborations so that the applied multiplicative decomposition generally serves as a fundamental modelling concept in this work; after generalised strain measures are introduced, a kinematic hardening model coupled with anisotropic damage, a substructure evolution framework as well as two different growth and remodelling formulations for biological tissues are presented.Andreas Menzelhabilitationhttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1896Tue, 25 Sep 2007 14:00:43 +0200Computational Modeling of Strong and Weak Discontinuities
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1717
Discontinuities can appear in different fields of mechanics. Some examples where discontinuities arise are more obvious such as the formation of cracks. Other sources of discontinuities are less apparent such as interfaces between different materials. Furthermore continuous fields with steep gradients can also be considered as discontinuous fields. This work aims at the inclusion of arbitrary discontinuities within the finite element method. Although the finite element method is the most sophisticated numerical tool in modern engineering, the inclusion of discontinuities is still a challenging task. Traditionally within finite the framework of FE methods discontinuities are modeled explicitely by the construction of the mesh. Thus, when a fixed mesh is used, the position of the discontinuity is prescribed by the location of interelement boundaries and not by the physical situation. The simulation of crack growth requires a frequent adaption of the mesh and that can be a difficult and computationally expensive task. Thus a more flexible numerical approach is needed which leads to the mesh-independent representation of the discontinuity. A challenging field where the accurate description of discontinuities is of vital importance is the modeling of failure in engineering materials. The load capacity of a structure is limited by the material strength. If the load limit is exceeded failure zones arise and increase. Representative examples of failure mechanisms are are cracks in brittle materials or shear bands in metals or soils. Failure processes are often accompanied by a strain softening material behaviour (decreasing load carrying capacity with increasing strain at a material point). It is known that the inclusion of strain softening material behaviour within a continuum description requires regularization techniques to preserve the well- posedness of the governing equations. One possibility is the consideration of non-local or gradient terms in the constitutive equations but these approaches require a sufficiently fine discretization in the localization zone, which leads to a high numerical effort. If the extent of the failure zone and the failure process to the point of the development of discrete cracks is considered it seems reasonable to include strong discontinuities. In the framework of fracture mechanics the inclusion of displacement jumps is intuitively comprehensible. However, the modeling of localized failure processes demands the consideration of inelastic material behaviour. Cohesive zone models represent an approach which is especially suited for the incorporation within the finite element framework. It is supposed that cohesive tractions are transmitted between the discontinuity surfaces. These tractions are constitutively prescribed by a phenomenological traction separation law and thus allow for the modeling of different inelastic mechanisms, like micro-crack evolution, initiation of voids, plastic flow or crack bridging. The incorporation of a displacement discontinuity in combination with a cohesive traction separation law leads to a sound model to describe failure processes and crack propagation. Another area where the existence of discontinuities is not as obvious is the occurence of material interfaces, inclusions or holes. The accurate modeling of such internal interfaces is important to predict the mechanical behaviour of components. The present discontinuity is of different nature: the displacement field is continuous but there is a jump in the strains, which is denoted by the expression weak discontinuity. Usually in FE methods material interfaces are taken into account by the mesh construction. But if the structure exhibits multiple inclusions of complex geometry it can be advantageous if the interface does not have to be meshed. And when we look at at problems where the interface moves with time, e. g. phase transformation, the mesh-independent modeling of the weak discontinuities naturally holds major advantages. The greatest challenge in the modeling of discontinuities is their incorporation into numerical methods. The focus of the present work is the development, analysis and application of a finite element approach to model mesh-independent discontinuities. The method shall be robust and flexible to be applicable to both, strong and weak discontinuities.Julia Mergheimdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1717Thu, 23 Mar 2006 13:14:00 +0100Computational Configurational Mechanics
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1705
In contrast to the spatial motion setting, the material motion setting of continuum mechanics is concerned with the response to variations of material placements of particles with respect to the ambient material. The material motion point of view is thus extremely prominent when dealing with defect mechanics to which it has originally been introduced by Eshelby more than half a century ago. Its primary unknown, the material deformation map is governed by the material motion balance of momentum, i.e. the balance of material forces on the material manifold in the sense of Eshelby. Material (configurational) forces are concerned with the response to variations of material placements of 'physical particles' with respect to the ambient material. Opposed to that, the common spatial (mechanical) forces in the sense of Newton are considered as the response to variations of spatial placements of 'physical particles' with respect to the ambient space. Material forces as advocated by Maugin are especially suited for the assessment of general defects as inhomogeneities, interfaces, dislocations and cracks, where the material forces are directly related to the classical J-Integral in fracture mechanics, see also Gross & Seelig. Another classical example of a material - or rather configurational - force is emblematized by the celebrated Peach-Koehler force, see e.g. the discussion in Steinmann. The present work is mainly divided in four parts. In the first part we will introduce the basic notions of the mechanics and numerics of material forces for a quasi-static conservative mechanical system. In this case the internal potential energy density per unit volume characterizes a hyperelastic material behaviour. In the first numerical example we discuss the reliability of the material force method to calculate the vectorial J-integral of a crack in a Ramberg-Osgood type material under mode I loading and superimposed T-stresses. Secondly, we study the direction of the single material force acting as the driving force of a kinked crack in a geometrically nonlinear hyperelastic Neo-Hooke material. In the second part we focus on material forces in the case of geometrically nonlinear thermo-hyperelastic material behaviour. Therefore we adapt the theory and numerics to a transient coupled problem, and elaborate the format of the Eshelby stress tensor as well as the internal material volume forces induced by the gradient of the temperature field. We study numerically the material forces in a bimaterial bar under tension load and the time dependent evolution of material forces in a cracked specimen. The third part discusses the material force method in the case of geometrically nonlinear isotropic continuum damage. The basic equations are similar to those of the thermo-hyperelastic problem but we introduce an alternative numerical scheme, namely an active set search algorithm, to calculate the damage field as an additional degree of freedom. With this at hand, it is an easy task to obtain the gradient of the damage field which induces the internal material volume forces. Numeric examples in this part are a specimen with an elliptic hole with different semi-axis, a center cracked specimen and a cracked disc under pure mode I loading. In the fourth part of this work we elaborate the format of the Eshelby stress tensor and the internal material volume forces for geometrically nonlinear multiplicative elasto-plasticity. Concerning the numerical implementation we restrict ourselves to the case of geometrically linear single slip crystal plasticity and compare here two different numerical methods to calculate the gradient of the internal variable which enters the format of the internal material volume forces. The two numerical methods are firstly, a node point based approach, where the internal variable is addressed as an additional degree of freedom, and secondly, a standard approach where the internal variable is only available at the integration points level. Here a least square projection scheme is enforced to calculate the necessary gradients of this internal variable. As numerical examples we discuss a specimen with an elliptic inclusion and an elliptic hole respectively and, in addition, a crack under pure mode I loading in a material with different slip angles. Here we focus on the comparison of the two different methods to calculate the gradient of the internal variable. As a second class of numerical problems we elaborate and implement a geometrically linear von Mises plasticity with isotropic hardening. Here the necessary gradients of the internal variables are calculated by the already mentioned projection scheme. The results of a crack in a material with different hardening behaviour under various additional T-stresses are given.Ralf Denzerdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1705Mon, 20 Feb 2006 19:20:47 +0100