KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Sat, 21 Jan 2006 15:51:35 +0100Sat, 21 Jan 2006 15:51:35 +0100Parameter optimization for a stress-strain correction scheme
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1702
A gradient based algorithm for parameter identification (least-squares) is applied to a multiaxial correction method for elastic stresses and strains at notches. The correction scheme, which is numerically cheap, is based on Jiang's model of elastoplasticity. Both mathematical stress-strain computations (nonlinear PDE with Jiang's constitutive material law) and physical strain measurements have been approximized. The gradient evaluation with respect to the parameters, which is large-scale, is realized by the automatic forward differentiation technique.Holger Lang; Rene Pinnau; Klaus Dreßlerreporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1702Sat, 21 Jan 2006 15:51:35 +0100Wavelet-Mie-Representations for Solenoidal Vector Fields with Applications to Ionospheric Geomagnetic Data
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1494
A wavelet technique, the wavelet-Mie-representation, is introduced for the analysis and modelling of the Earth's magnetic field and corresponding electric current distributions from geomagnetic data obtained within the ionosphere. The considerations are essentially based on two well-known geomathematical keystones, (i) the Helmholtz-decomposition of spherical vector fields and (ii) the Mie-representation of solenoidal vector fields in terms of poloidal and toroidal parts. The wavelet-Mie-representation is shown to provide an adequate tool for geomagnetic modelling in the case of ionospheric magnetic contributions and currents which exhibit spatially localized features. An important example are ionospheric currents flowing radially onto or away from the Earth. To demonstrate the functionality of the approach, such radial currents are calculated from vectorial data of the MAGSAT and CHAMP satellite missions.Thorsten Maierreporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1494Thu, 05 Feb 2004 16:17:08 +0100Wavelet Modelling of the Spherical Inverse Source Problem with Application to Geomagnetism
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1468
The article is concerned with the modelling of ionospheric current systems from induced magnetic fields measured by satellites in a multiscale framework. Scaling functions and wavelets are used to realize a multiscale analysis of the function spaces under consideration and to establish a multiscale regularization procedure for the inversion of the considered vectorial operator equation. Based on the knowledge of the singular system a regularization technique in terms of certain product kernels and corresponding convolutions can be formed. In order to reconstruct ionospheric current systems from satellite magnetic field data, an inversion of the Biot-Savart's law in terms of multiscale regularization is derived. The corresponding operator is formulated and the singular values are calculated. The method is tested on real magnetic field data of the satellite CHAMP and the proposed satellite mission SWARM.Carsten Mayerreporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1468Thu, 22 Jan 2004 18:15:36 +0100Wavelet Modelling of Ionospheric Currents and Induced Magnetic Fields From Satellite Data
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1437
The thesis is concerned with the modelling of ionospheric current systems and induced magnetic fields in a multiscale framework. Scaling functions and wavelets are used to realize a multiscale analysis of the function spaces under consideration and to establish a multiscale regularization procedure for the inversion of the considered operator equation. First of all a general multiscale concept for vectorial operator equations between two separable Hilbert spaces is developed in terms of vector kernel functions. The equivalence to the canonical tensorial ansatz is proven and the theory is transferred to the case of multiscale regularization of vectorial inverse problems. As a first application, a special multiresolution analysis of the space of square-integrable vector fields on the sphere, e.g. the Earth’s magnetic field measured on a spherical satellite’s orbit, is presented. By this, a multiscale separation of spherical vector-valued functions with respect to their sources can be established. The vector field is split up into a part induced by sources inside the sphere, a part which is due to sources outside the sphere and a part which is generated by sources on the sphere, i.e. currents crossing the sphere. The multiscale technqiue is tested on a magnetic field data set of the satellite CHAMP and it is shown that crustal field determination can be improved by previously applying our method. In order to reconstruct ionspheric current systems from magnetic field data, an inversion of the Biot-Savart’s law in terms of multiscale regularization is defined. The corresponding operator is formulated and the singular values are calculated. Based on the konwledge of the singular system a regularzation technique in terms of certain product kernels and correponding convolutions can be formed. The method is tested on different simulations and on real magnetic field data of the satellite CHAMP and the proposed satellite mission SWARM.Carsten Mayerdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1437Fri, 26 Sep 2003 10:35:10 +0200Multiscale Geomagnetic Field Modelling from Satellite Data: Theoretical Aspects and Numerical Applications
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1379
Different aspects of geomagnetic field modelling from satellite data are examined in the framework of modern multiscale approximation. The thesis is mostly concerned with wavelet techniques, i.e. multiscale methods based on certain classes of kernel functions which are able to realize a multiscale analysis of the funtion (data) space under consideration. It is thus possible to break up complicated functions like the geomagnetic field, electric current densities or geopotentials into different pieces and study these pieces separately. Based on a general approach to scalar and vectorial multiscale methods, topics include multiscale denoising, crustal field approximation and downward continuation, wavelet-parametrizations of the magnetic field in Mie-representation as well as multiscale-methods for the analysis of time-dependent spherical vector fields. For each subject the necessary theoretical framework is established and numerical applications examine and illustrate the practical aspects.Thorsten Maierdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1379Fri, 28 Feb 2003 12:29:34 +0100