KLUEDO RSS FeedNeueste Dokumente / Latest documents
https://kluedo.ub.uni-kl.de/index/index/
Tue, 23 Aug 2011 01:39:48 +0200Tue, 23 Aug 2011 01:39:48 +0200Local Smoothing Methods with Regularization in Nonparametric Regression Models
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2712
Mrázek et al. [14] proposed a unified approach to curve estimation which combines
localization and regularization. In this thesis we will use their approach to study
some asymptotic properties of local smoothers with regularization. In Particular, we
shall discuss the regularized local least squares (RLLS) estimate with correlated errors
(more precisely with stationary time series errors), and then based on this approach
we will discuss the case when the kernel function is dirac function and compare our
smoother with the spline smoother. Finally, we will do some simulation study.Mohammad Fawaz Kourabidoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2712Tue, 23 Aug 2011 01:39:48 +0200Testing for parameter stability in nonlinear autoregressive models
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2301
In this paper we develop testing procedures for the detection of structural changes in nonlinear autoregressive processes. For the detection procedure we model the regression function by a single layer feedforward neural network. We show that CUSUM-type tests based on cumulative sums of estimated residuals, that have been intensively studied for linear regression, can be extended to this case. The limit distribution under the null hypothesis is obtained, which is needed to construct asymptotic tests. For a large class of alternatives it is shown that the tests have asymptotic power one. In this case, we obtain a consistent change-point estimator which is related to the test statistics. Power and size are further investigated in a small simulation study with a particular emphasis on situations where the model is misspecified, i.e. the data is not generated by a neural network but some other regression function. As illustration, an application on the Nile data set as well as S&P log-returns is given.Claudia Kirch; Joseph Tadjuidje Kamgaingpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2301Fri, 25 Mar 2011 14:44:06 +0100Mixtures of Nonparametric Autoregression, revised
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2115
We consider data generating mechanisms which can be represented as mixtures of finitely many regression or autoregression models. We propose nonparametric estimators for the functions characterizing the various mixture components based on a local quasi maximum likelihood approach and prove their consistency. We present an EM algorithm for calculating the estimates numerically which is mainly based on iteratively applying common local smoothers and discuss its convergence properties.Jürgen Franke; Jean-Pierre Stockis; Joseph Tadjuidje; W.K. Lipreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2115Mon, 27 Jul 2009 08:47:55 +0200Competing Neural Networks as Models for Non Stationary Financial Time Series -Changepoint Analysis-
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1613
The problem of structural changes (variations) play a central role in many scientific fields. One of the most current debates is about climatic changes. Further, politicians, environmentalists, scientists, etc. are involved in this debate and almost everyone is concerned with the consequences of climatic changes. However, in this thesis we will not move into the latter direction, i.e. the study of climatic changes. Instead, we consider models for analyzing changes in the dynamics of observed time series assuming these changes are driven by a non-observable stochastic process. To this end, we consider a first order stationary Markov Chain as hidden process and define the Generalized Mixture of AR-ARCH model(GMAR-ARCH) which is an extension of the classical ARCH model to suit to model with dynamical changes. For this model we provide sufficient conditions that ensure its geometric ergodic property. Further, we define a conditional likelihood given the hidden process and a pseudo conditional likelihood in turn. For the pseudo conditional likelihood we assume that at each time instant the autoregressive and volatility functions can be suitably approximated by given Feedfoward Networks. Under this setting the consistency of the parameter estimates is derived and versions of the well-known Expectation Maximization algorithm and Viterbi Algorithm are designed to solve the problem numerically. Moreover, considering the volatility functions to be constants, we establish the consistency of the autoregressive functions estimates given some parametric classes of functions in general and some classes of single layer Feedfoward Networks in particular. Beside this hidden Markov Driven model, we define as alternative a Weighted Least Squares for estimating the time of change and the autoregressive functions. For the latter formulation, we consider a mixture of independent nonlinear autoregressive processes and assume once more that the autoregressive functions can be approximated by given single layer Feedfoward Networks. We derive the consistency and asymptotic normality of the parameter estimates. Further, we prove the convergence of Backpropagation for this setting under some regularity assumptions. Last but not least, we consider a Mixture of Nonlinear autoregressive processes with only one abrupt unknown changepoint and design a statistical test that can validate such changes.Joseph Tadjuidje Kamgaingdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1613Wed, 23 Feb 2005 12:52:52 +0100