KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Mon, 08 Jan 2007 14:25:11 +0100Mon, 08 Jan 2007 14:25:11 +0100On Numerical Pricing Methods of Innovative Financial Products
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1830
The fast development of the financial markets in the last decade has lead to the creation of a variety of innovative interest rate related products that require advanced numerical pricing methods. Examples in this respect are products with a complicated strong path-dependence such as a Target Redemption Note, a Ratchet Cap, a Ladder Swap and others. On the other side, the usage of the standard in the literature one-factor Hull and White (1990) type of short rate models allows only for a perfect correlation between all continuously compounded spot rates or Libor rates and thus are not suited for pricing innovative products depending on several Libor rates such as for example a "steepener" option. One possible solution to this problem deliver the two-factor short rate models and in this thesis we consider a two-factor Hull and White (1990) type of a short rate process derived from the Heath, Jarrow, Morton (1992) framework by limiting the volatility structure of the forward rate process to a deterministic one. In this thesis, we often choose to use a variety of modified (binomial, trinomial and quadrinomial) tree constructions as a main numerical pricing tool due to their flexibility and fast convergence and (when there is no closed-form solution) compare their results with fine grid Monte Carlo simulations. For the purpose of pricing the already mentioned innovative short-rate related products, in this thesis we offer and examine two different lattice construction methods for the two-factor Hull-White type of a short rate process which are able to deal easily both with modeling of the mean-reversion of the underlying process and with the strong path-dependence of the priced options. Additionally, we prove that the so-called rotated lattice construction method overcomes the typical for the existing two-factor tree constructions problem with obtaining negative "risk-neutral probabilities". With a variety of numerical examples, we show that this leads to a stability in the results especially in cases of high volatility parameters and negative correlation between the base factors (which is typically the case in reality). Further, noticing that Chan et al (1992) and Ritchken and Sankarasubramanian (1995) showed that option prices are sensitive to the level of the short rate volatility, we examine the pricing of European and American options where the short rate process has a volatility structure of a Cheyette (1994) type. In this relation, we examine the application of the two offered lattice construction methods and compare their results with the Monte Carlo simulation ones for a variety of examples. Additionally, for the pricing of American options with the Monte Carlo method we expand and implement the simulation algorithm of Longstaff and Schwartz (2000). With a variety of numerical examples we compare again the stability and the convergence of the different lattice construction methods. Dealing with the problems of pricing strongly path-dependent options, we come across the cumulative Parisian barrier option pricing problem. We notice that in their classical form, the cumulative Parisian barrier options have been priced both analytically (in a quasi closed form) and with a tree approximation (based on the Forward Shooting Grid algorithm, see e.g. Hull and White (1993), Kwok and Lau (2001) and others). However, we offer an additional tree construction method which can be seen as a direct binomial tree integration that uses the analytically calculated conditional survival probabilities. The advantage of the offered method is on one side that the conditional survival probabilities are easier to calculate than the closed-form solution itself and on the other side that this tree construction is very flexible in the sense that it allows easy incorporation of additional features such as e.g a forward starting one. The obtained results are better than the Forward Shooting Grid tree ones and are very close to the analytical quasi closed form solution. Finally, we pay our attention to pricing another type of innovative interest rate alike products - namely the Longevity bond - whose coupon payments depend on the survival function of a given cohort. Due to the lack of a market for mortality, for the pricing of the Longevity bonds we develop (following Korn, Natcheva and Zipperer (2006)) a framework that contains principles from both Insurance and Financial mathematic. Further on, we calibrate the existing models for the stochastic mortality dynamics to historical German data and additionally offer new stochastic extensions of the classical (deterministic) models of mortality such as the Gompertz and the Makeham one. Finally, we compare and analyze the results of the application of all considered models to the pricing of a Longevity bond on the longevity of the German males.Kalina Petrova Natcheva-Acardoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1830Mon, 08 Jan 2007 14:25:11 +0100