KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Thu, 07 Jan 2016 14:50:15 +0100Thu, 07 Jan 2016 14:50:15 +0100Isogeometric finite element methods for shape optimization
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4264
In this thesis we develop a shape optimization framework for isogeometric analysis in the optimize firstâ€“discretize then setting. For the discretization we use
isogeometric analysis (iga) to solve the state equation, and search optimal designs in a space of admissible b-spline or nurbs combinations. Thus a quite
general class of functions for representing optimal shapes is available. For the
gradient-descent method, the shape derivatives indicate both stopping criteria and search directions and are determined isogeometrically. The numerical treatment requires solvers for partial differential equations and optimization methods, which introduces numerical errors. The tight connection between iga and geometry representation offers new ways of refining the geometry and analysis discretization by the same means. Therefore, our main concern is to develop the optimize first framework for isogeometric shape optimization as ground work for both implementation and an error analysis. Numerical examples show that this ansatz is practical and case studies indicate that it allows local refinement.Daniela FuĂźederdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4264Thu, 07 Jan 2016 14:50:15 +0100Isogeometric Finite Element Analysis of Nonlinear Structural Vibrations
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4079
In this thesis we present a new method for nonlinear frequency response analysis of mechanical vibrations.
For an efficient spatial discretization of nonlinear partial differential equations of continuum mechanics we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of exact geometry representation and higher accuracy of numerical approximations using spline functions.
For computing nonlinear frequency response to periodic external excitations, we rely on the well-established harmonic balance method. It expands the solution of the nonlinear ordinary differential equation system resulting from spatial discretization as a truncated Fourier series in the frequency domain.
A fundamental aspect for enabling large-scale and industrial application of the method is model order reduction of the spatial discretization of the equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. We investigate the concept of modal derivatives theoretically and using computational examples we demonstrate the applicability and accuracy of the reduction method for nonlinear static computations and vibration analysis.
Furthermore, we extend nonlinear vibration analysis to incompressible elasticity using isogeometric mixed finite element methods.
Oliver Weegerdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4079Wed, 20 May 2015 11:46:03 +0200Isogeometric Shell Discretizations for Flexible Multibody Dynamics
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4076
This work aims at including nonlinear elastic shell models in a multibody framework. We focus our attention to Kirchhoff-Love shells and explore the benefits of an isogeometric approach, the latest development in finite element methods, within a multibody system. Isogeometric analysis extends isoparametric finite elements to more general functions such as B-Splines and Non-Uniform Rational B-Splines (NURBS) and works on exact geometry representations even at the coarsest level of discretizations. Using NURBS as basis functions, high regularity requirements of the shell model, which are difficult to achieve with standard finite elements, are easily fulfilled. A particular advantage is the promise of simplifying the mesh generation step, and mesh refinement is easily performed by eliminating the need for communication with the geometry representation in a Computer-Aided Design (CAD) tool.
Quite often the domain consists of several patches where each patch is parametrized by means of NURBS, and these patches are then glued together by means of continuity conditions. Although the techniques known from domain decomposition can be carried over to this situation, the analysis of shell structures is substantially more involved as additional angle preservation constraints between the patches might arise. In this work, we address this issue in the stationary and transient case and make use of the analogy to constrained mechanical systems with joints and springs as interconnection elements. Starting point of our work is the bending strip method which is a penalty approach that adds extra stiffness to the interface between adjacent patches and which is found to lead to a so-called stiff mechanical system that might suffer from ill-conditioning and severe stepsize restrictions during time integration. As a remedy, an alternative formulation is developed that improves the condition number of the system and removes the penalty parameter dependence. Moreover, we study another alternative formulation with continuity constraints applied to triples of control points at the interface. The approach presented here to tackle stiff systems is quite general and can be applied to all penalty problems fulfilling some regularity requirements.
The numerical examples demonstrate an impressive convergence behavior of the isogeometric approach even for a coarse mesh, while offering substantial savings with respect to the number of degrees of freedom. We show a comparison between the different multipatch approaches and observe that the alternative formulations are well conditioned, independent of any penalty parameter and give the correct results. We also present a technique to couple the isogeometric shells with multibody systems using a pointwise interaction. Anmol Goyaldoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4076Tue, 19 May 2015 09:55:55 +0200Modeling and design optimization of textile-like materials via homogenization and one-dimensional models of elasticity
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4019
The work consists of two parts.
In the first part an optimization problem of structures of linear elastic material with contact modeled by Robin-type boundary conditions is considered. The structures model textile-like materials and possess certain quasiperiodicity properties. The homogenization method is used to represent the structures by homogeneous elastic bodies and is essential for formulations of the effective stress and Poisson's ratio optimization problems. At the micro-level, the classical one-dimensional Euler-Bernoulli beam model extended with jump conditions at contact interfaces is used. The stress optimization problem is of a PDE-constrained optimization type, and the adjoint approach is exploited. Several numerical results are provided.
In the second part a non-linear model for simulation of textiles is proposed. The yarns are modeled by hyperelastic law and have no bending stiffness. The friction is modeled by the Capstan equation. The model is formulated as a problem with the rate-independent dissipation, and the basic continuity and convexity properties are investigated. The part ends with numerical experiments and a comparison of the results to a real measurement.
Vladimir Shiryaevdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4019Mon, 09 Mar 2015 14:42:08 +0100Pedestrian Flow Models
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3803
There have been many crowd disasters because of poor planning of the events. Pedestrian models are useful in analysing the behavior of pedestrians in advance to the events so that no pedestrians will be harmed during the event. This thesis deals with pedestrian flow models on microscopic, hydrodynamic and scalar scales. By following the Hughes' approach, who describes the crowd as a thinking fluid, we use the solution of the Eikonal equation to compute the optimal path for pedestrians. We start with the microscopic model for pedestrian flow and then derive the hydrodynamic and scalar models from it. We use particle methods to solve the governing equations. Moreover, we have coupled a mesh free particle method to the fixed grid for solving the Eikonal equation. We consider an example with a large number of pedestrians to investigate our models for different settings of obstacles and for different parameters. We also consider the pedestrian flow in a straight corridor and through T-junction and compare our numerical results with the experiments. A part of this work is devoted for finding a mesh free method to solve the Eikonal equation. Most of the available methods to solve the Eikonal equation are restricted to either cartesian grid or triangulated grid. In this context, we propose a mesh free method to solve the Eikonal equation, which can be applicable to any arbitrary grid and useful for the complex geometries. Raghavender Etikyaladoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3803Fri, 16 May 2014 12:02:59 +0200