KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Tue, 08 Feb 2000 00:00:00 +0100Tue, 08 Feb 2000 00:00:00 +0100Quantized spin wave modes in micron size magnetic discs
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/941
We report on the observation of spin wave quantization in tangentially magnetized Ni80Fe20 discs by means of Brillouin light scattering spectroscopy. For a large wave vector interval several discrete, dispersionless modes with a frequency splitting up to 2.5 GHz were observed. The modes are identified as being magne-tostatic surface spin wave modes quantized by their lateral confinement in the disc. For the lowest modes dynamic magnetic dipolar coupling between the discs is found for a disc spacing of 0.1microm.J Jorzick; Serguei Demokritov; Burkard Hillebrands; C Chappert; D. Decanini; F. Rousseaux; E. Cambrilpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/941Tue, 08 Feb 2000 00:00:00 +0100Anisotropic magnetic coupling of permalloy micron dots forming a square lattice
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/926
Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. A magnetic fourfold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.Christoph Mathieu; Martin Bauer; Oliver Büttner; Steffen Riedling; Björn Roos; Serguei Demokritov; Burkard Hillebrands; C. Hartmann; B. Bartenlian; C. Chappert; D. Decanini; F. Rousseaux; E. Cambril; A. Müller; B. Hoffmann; U. Hartmannarticlehttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/926Wed, 01 Jan 1997 00:00:00 +0100Static and dynamic properties of patterned magnetic permalloy films
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/930
Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. The spin wave frequencies can be well described taking into account the demagnetization factor of each single dot. A magnetic four-fold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.Burkard Hillebrands; Christoph Mathieu; C. Hartmann; Martin Bauer; Oliver Büttner; Steffen Riedling; Björn Roos; Serguei Demokritov; B. Bartenlian; C. Chappert; D. Decanini; F. Rousseaux; E. Cambril; A. Müller; B. Hoffmann; U. Hartmannarticlehttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/930Wed, 01 Jan 1997 00:00:00 +0100