KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Mon, 07 Sep 2015 14:06:19 +0200Mon, 07 Sep 2015 14:06:19 +0200Competitive Algorithms for Multistage Online Scheduling
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4119
We study an online flow shop scheduling problem where each job consists of several tasks that have to be completed in t different stages and the goal is to maximize the total weight of accepted jobs.
The set of tasks of a job contains one task for each stage and each stage has a dedicated set of identical parallel machines corresponding to it that can only process tasks of this stage. In order to gain the weight (profit) associated with a job j, each of its tasks has to be executed between a task-specific release date and deadline subject to the constraint that all tasks of job j from stages 1, …, i-1 have to be completed before the task of the ith stage can be started. In the online version, jobs arrive over time and all information about the tasks of a job becomes available at the release date of its first task. This model can be used to describe production processes in supply chains when customer orders arrive online.
We show that even the basic version of the offline problem with a single machine in each stage, unit weights, unit processing times, and fixed execution times for all tasks (i.e., deadline minus release date equals processing time) is APX-hard. Moreover, we show that the approximation ratio of any polynomial-time approximation algorithm for this basic version of the problem must depend on the number t of stages.
For the online version of the basic problem, we provide a (2t-1)-competitive deterministic online algorithm and a matching lower bound. Moreover, we provide several (sometimes tight) upper and lower bounds on the competitive ratio of online algorithms for several generalizations of the basic problem involving different weights, arbitrary release dates and deadlines, different processing times of tasks, and several identical machines per stage.
Michael Hopf; Clemens Thielen; Oliver Wendtpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4119Thu, 09 Jul 2015 14:06:19 +0200Online Delay Management
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2197
We present extensions to the Online Delay Management Problem on a Single Train Line. While a train travels along the line, it learns at each station how many of the passengers wanting to board the train have a delay of delta. If the train does not wait for them, they get delayed even more since they have to wait for the next train. Otherwise, the train waits and those passengers who were on time are delayed by delta. The problem consists in deciding when to wait in order to minimize the total delay of all passengers on the train line. We provide an improved lower bound on the competitive ratio of any deterministic online algorithm solving the problem using game tree evaluation. For the extension of the original model to two possible passenger delays delta_1 and delta_2, we present a 3-competitive deterministic online algorithm. Moreover, we study an objective function modeling the refund system of the German national railway company, which pays passengers with a delay of at least Delta a part of their ticket price back. In this setting, the aim is to maximize the profit. We show that there cannot be a deterministic competitive online algorithm for this problem and present a 2-competitive randomized algorithm.Sven O. Krumke; Clemens Thielen; Christiane Zeckreporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2197Thu, 08 Jul 2010 08:52:34 +0200