KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Tue, 08 Feb 2000 00:00:00 +0100Tue, 08 Feb 2000 00:00:00 +0100Spin dynamics in magnetic films patterned into dots and wires
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/933
An experimental study of spin wave quantization in arrays of micron size magnetic Ni80Fe20 islands (dots and wires) by means of Brillouin light scattering spectroscopy is reported. Dipolar-dominated spin wave modes laterally quantized in a single island with quantized wavevector values determined by the size of the island are studied. In the case of wires the frequencies of the modes and the transferred wavevector interval, where each mode is observed, are calculated. The results of the calculations are in a good agreement with the experimental data. In the case of circular dots the frequencies of the lowest observed modes decrease with increasing distance between the dots, thus indicating an essential dynamic magnetic dipole interaction between the dots with small interdot distances.Jörg Jorzick; Serguei Demokritov; Burkard Hillebrands; B. Bartenlian; C Chappert; F. Rousseaux; A.N. Slavinpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/933Tue, 08 Feb 2000 00:00:00 +0100Quantized spin wave modes in micron size magnetic discs
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/941
We report on the observation of spin wave quantization in tangentially magnetized Ni80Fe20 discs by means of Brillouin light scattering spectroscopy. For a large wave vector interval several discrete, dispersionless modes with a frequency splitting up to 2.5 GHz were observed. The modes are identified as being magne-tostatic surface spin wave modes quantized by their lateral confinement in the disc. For the lowest modes dynamic magnetic dipolar coupling between the discs is found for a disc spacing of 0.1microm.J Jorzick; Serguei Demokritov; Burkard Hillebrands; C Chappert; D. Decanini; F. Rousseaux; E. Cambrilpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/941Tue, 08 Feb 2000 00:00:00 +0100Anisotropic magnetic coupling of permalloy micron dots forming a square lattice
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/926
Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. A magnetic fourfold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.Christoph Mathieu; Martin Bauer; Oliver Büttner; Steffen Riedling; Björn Roos; Serguei Demokritov; Burkard Hillebrands; C. Hartmann; B. Bartenlian; C. Chappert; D. Decanini; F. Rousseaux; E. Cambril; A. Müller; B. Hoffmann; U. Hartmannarticlehttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/926Wed, 01 Jan 1997 00:00:00 +0100Static and dynamic properties of patterned magnetic permalloy films
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/930
Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. The spin wave frequencies can be well described taking into account the demagnetization factor of each single dot. A magnetic four-fold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.Burkard Hillebrands; Christoph Mathieu; C. Hartmann; Martin Bauer; Oliver Büttner; Steffen Riedling; Björn Roos; Serguei Demokritov; B. Bartenlian; C. Chappert; D. Decanini; F. Rousseaux; E. Cambril; A. Müller; B. Hoffmann; U. Hartmannarticlehttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/930Wed, 01 Jan 1997 00:00:00 +0100