KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Thu, 11 Oct 2012 16:59:06 +0200Thu, 11 Oct 2012 16:59:06 +0200Construction of discrete shell models by geometric finite differences
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3322
In the presented work, we make use of the strong reciprocity between kinematics and geometry to build a geometrically nonlinear, shearable low order discrete shell model of Cosserat type defined on triangular meshes, from which we deduce a rotation–free Kirchhoff type model with the triangle vertex positions as degrees of freedom. Both models behave physically plausible already on very coarse meshes, and show good
convergence properties on regular meshes. Moreover, from the theoretical side, this deduction provides a
common geometric framework for several existing models.C. Weischedel; A. Tuganov; T. Hermansson; J. Linn; M. Wardetzkyreporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3322Thu, 11 Oct 2012 16:59:06 +0200Geometrically exact Cosserat rods with Kelvin-Voigt type viscous damping
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3320
We present the derivation of a simple viscous damping model of Kelvin–Voigt type for geometrically exact
Cosserat rods from three–dimensional continuum theory. Assuming a homogeneous and isotropic material,
we obtain explicit formulas for the damping parameters of the model in terms of the well known stiffness
parameters of the rod and the retardation time constants defined as the ratios of bulk and shear viscosities to
the respective elastic moduli. We briefly discuss the range of validity of our damping model and illustrate
its behaviour with a numerical example.J. Linn; H. Lang; A. Tuganovreporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3320Thu, 11 Oct 2012 16:58:20 +0200