KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Fri, 04 Jul 2008 17:08:11 +0200Fri, 04 Jul 2008 17:08:11 +0200On the Local Multiscale Determination of the Earth`s Disturbing Potential From Discrete Deflections of the Vertical
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1947
As a first approximation the Earth is a sphere; as a second approximation it may be considered an ellipsoid of revolution. The deviations of the actual Earth's gravity field from the ellipsoidal 'normal' field are so small that they can be understood to be linear. The splitting of the Earth's gravity field into a 'normal' and a remaining small 'disturbing' field considerably simplifies the problem of its determination. Under the assumption of an ellipsoidal Earth model high observational accuracy is achievable only if the deviation (deflection of the vertical) of the physical plumb line, to which measurements refer, from the ellipsoidal normal is not ignored. Hence, the determination of the disturbing potential from known deflections of the vertical is a central problem of physical geodesy. In this paper we propose a new, well-promising method for modelling the disturbing potential locally from the deflections of the vertical. Essential tools are integral formulae on the sphere based on Green's function of the Beltrami operator. The determination of the disturbing potential from deflections of the vertical is formulated as a multiscale procedure involving scale-dependent regularized versions of the surface gradient of the Green function. The modelling process is based on a multiscale framework by use of locally supported surface curl-free vector wavelets.Willi Freeden; Thomas Fehlinger; Carsten Mayer; Michael Schreinerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1947Mon, 07 Apr 2008 17:08:11 +0200Local Modelling of Sea Surface Topography from (Geostrophic) Ocean Flow
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1836
This paper deals with the problem of determining the sea surface topography from geostrophic flow of ocean currents on local domains of the spherical Earth. In mathematical context the problem amounts to the solution of a spherical differential equation relating the surface curl gradient of a scalar field (sea surface topography) to a surface divergence-free vector field(geostrophic ocean flow). At first, a continuous solution theory is presented in the framework of an integral formula involving Green’s function of the spherical Beltrami operator. Different criteria derived from spherical vector analysis are given to investigate uniqueness. Second, for practical applications Green’s function is replaced by a regularized counterpart. The solution is obtained by a convolution of the flow field with a scaled version of the regularized Green function. Calculating locally without boundary correction would lead to errors near the boundary. To avoid these Gibbs phenomenona we additionally consider the boundary integral of the corresponding region on the sphere which occurs in the integral formula of the solution. For reasons of simplicity we discuss a spherical cap first, that means we consider a continuously differentiable (regular) boundary curve. In a second step we concentrate on a more complicated domain with a non continuously differentiable boundary curve, namely a rectangular region. It will turn out that the boundary integral provides a major part for stabilizing and reconstructing the approximation of the solution in our multiscale procedure.Thomas Fehlinger; Willi Freeden; Simone Gramsch; Carsten Mayer; Dominik Michel; Michael Schreinerreporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1836Sun, 11 Feb 2007 15:03:15 +0100Biorthogonal Locally Supported Wavelets on the Sphere Based on Zonal Kernel Functions
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1787
This paper presents a method for approximating spherical functions from discrete data of a block-wise grid structure. The essential ingredients of the approach are scaling and wavelet functions within a biorthogonalisation process generated by locally supported zonal kernel functions. In consequence, geophysically and geodetically relevant problems involving rotation-invariant pseudodifferential operators become attackable. A multiresolution analysis is formulated enabling a fast wavelet transform similar to the algorithms known from one-dimensional Euclidean theory.Willi Freeden; Michael Schreinerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1787Tue, 24 Oct 2006 22:02:39 +0200A Tree Algorithm for Isotropic Finite Elements on the Sphere
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1447
The Earth's surface is an almost perfect sphere. Deviations from its spherical shape are less than 0,4% of its radius and essentially arise from its rotation. All equipotential surfaces are nearly spherical, too. In consequence, multiscale modelling of geoscientifically relevant data on the sphere involving rotational symmetry of the trial functions used for the approximation plays an important role. In this paper we deal with isotropic kernel functions showing local support and (one-dimensional) polynomial structure (briefly called isotropic finite elements) for reconstructing square--integrable functions on the sphere. Essential tool is the concept of multiresolution analysis by virtue of the spherical up function. The main result is a tree algorithm in terms of (low--order) isotropic finite elements.Frank Bauer; Willi Freeden; Michael Schreinerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1447Mon, 10 Nov 2003 10:47:32 +0100Multiresolution Analysis by Spherical Up Functions
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1446
A new class of locally supported radial basis functions on the (unit) sphere is introduced by forming an infinite number of convolutions of ''isotropic finite elements''. The resulting up functions show useful properties: They are locally supported and are infinitely often differentiable. The main properties of these kernels are studied in detail. In particular, the development of a multiresolution analysis within the reference space of square--integrable functions over the sphere is given. Altogether, the paper presents a mathematically significant and numerically efficient introduction to multiscale approximation by locally supported radial basis functions on the sphere.Willi Freeden; Michael Schreinerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1446Mon, 10 Nov 2003 10:42:17 +0100A: New Wavelet Methods for Approximating Harmonic Functions; B: Satellite Gradiometry - from Mathematical and Numerical Point of View
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/537
Some new approximation methods are described for harmonic functions corresponding to boundary values on the (unit) sphere. Starting from the usual Fourier (orthogonal) series approach, we propose here nonorthogonal expansions, i.e. series expansions in terms of overcomplete systems consisting of localizing functions. In detail, we are concerned with the so-called Gabor, Toeplitz, and wavelet expansions. Essential tools are modulations, rotations, and dilations of a mother wavelet. The Abel-Poisson kernel turns out to be the appropriate mother wavelet in approximation of harmonic functions from potential values on a spherical boundary.Willi Freeden; Michael Schreinerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/537Mon, 03 Apr 2000 00:00:00 +0200Deformation Analysis Using Navier Spline Interpolation
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/567
The static deformation of the surface of the earth caused by surface pressure like the water load of an ocean or an artificial lake is discussed. First a brief mention is made on the solution of the Boussenesq problem for an infinite halfspace with the elastic medium to be assumed as homogeneous and isotropic. Then the elastic response for realistic earth models is determinied by spline interpolation using Navier splines. Major emphasis is on the derteminination of the elastic field caused by water loads from surface tractions on the (real) earth" s surface. Finally the elastic deflection of an artificial lake assuming a homogeneous isotropic crust is compared for both evaluation methods.Willi Freeden; E. Groten; Michael Schreiner; W. Söhhne; M. Tücckspreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/567Mon, 03 Apr 2000 00:00:00 +0200A Survey on Spherical Spline Approximation
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/590
Spline functions that approximate data given on the sphere are developed in a weighted Sobolev space setting. The flexibility of the weights makes possible the choice of the approximating function in a way which emphasizes attributes desirable for the particular application area. Examples show that certain choices of the weight sequences yield known methods. A convergence theorem containing explicit constants yields a usable error bound. Our survey ends with the discussion of spherical splines in geodetically relevant pseudodifferential equations.Willi Freeden; Michael Schreiner; R. Frankepreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/590Mon, 03 Apr 2000 00:00:00 +0200Gradiometry - an Inverse Problem in Modern Satellite Geodesy
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/595
Satellite gradiometry and its instrumentation is an ultra-sensitive detection technique of the space gravitational gradient (i.e. the Hesse tensor of the gravitational potential). Gradeometry will be of great significance in inertial navigation, gravity survey, geodynamics and earthquake prediction research. In this paper, satellite gradiometry formulated as an inverse problem of satellite geodesy is discussed from two mathematical aspects: Firstly, satellite gradiometry is considered as a continuous problem of harmonic downward continuation. The space-borne gravity gradients are assumed to be known continuously over the satellite (orbit) surface. Our purpose is to specify sufficient conditions under which uniqueness and existence can be guaranteed. It is shown that, in a spherical context, uniqueness results are obtainable by decomposition of the Hesse matrix in terms of tensor spherical harmonics. In particular, the gravitational potential is proved to be uniquely determined if second order radial derivatives are prescribed at satellite height. This information leads us to a reformulation of satellite gradiometry as a (Fredholm) pseudodifferential equation of first kind. Secondly, for a numerical realization, we assume the gravitational gradients to be known for a finite number of discrete points. The discrete problem is dealt with classical regularization methods, based on filtering techniques by means of spherical wavelets. A spherical singular integral-like approach to regularization methods is established, regularization wavelets are developed which allow the regularization in form of a multiresolution analysis. Moreover, a combined spherical harmonic and spherical regularization wavelet solution is derived as an appropriate tool in future (global and local) high-presision resolution of the earth" s gravitational potential.Willi Freeden; F. Schneider; Michael Schreinerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/595Mon, 03 Apr 2000 00:00:00 +0200Orthogonal and non-orthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/597
Based on a new definition of delation a scale discrete version of spherical multiresolution is described, starting from a scale discrete wavelet transform on the sphere. Depending on the type of application, different families of wavelets are chosen. In particular, spherical Shannon wavelets are constructed that form an orthogonal multiresolution analysis. Finally fully discrete wavelet approximation is discussed in case of band-limited wavelets.Willi Freeden; Michael Schreinerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/597Mon, 03 Apr 2000 00:00:00 +0200Spherical panel clustering and its numerical aspects
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/619
In modern approximation methods linear combinations in terms of (space localizing) radial basis functions play an essential role. Areas of application are numerical integration formulas on the uni sphere omega corresponding to prescribed nodes, spherical spline interpolation, and spherical wavelet approximation. the evaluation of such a linear combination is a time consuming task, since a certain number of summations, multiplications and the calculation of scalar products are required. This paper presents a generalization of the panel clustering method in a spherical setup. The economy and efficiency of panel clustering is demonstrated for three fields of interest, namely upward continuation of the earth's gravitational potential, geoid computation by spherical splines and wavelet reconstruction of the gravitational potential.Willi Freeden; Oliver Glockner; Michael Schreinerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/619Mon, 03 Apr 2000 00:00:00 +0200Tensor Spherical Harmonics and Tensor Spherical Splines
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/726
In this paper, we deal with the problem of spherical interpolation of discretely given data of tensorial type. To this end, spherical tensor fields are investigated and a decomposition formula is described. Tensor spherical harmonics are introduced as eigenfunctions of a tensorial analogon to the Beltrami operator and discussed in detail. Based on these preliminaries, a spline interpolation process is described and error estimates are presented. Furthermore, some relations between the spline basis functions and the theory of radial basis functions are developed.Willi Freeden; T. Gervens; Michael Schreinerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/726Mon, 03 Apr 2000 00:00:00 +0200Nonorthogonal Expansions on the Sphere
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/736
Discrete families of functions with the property that every function in a certain space can be represented by its formal Fourier series expansion are developed on the sphere. A Fourier series type expansion is obviously true if the family is an orthonormal basis of a Hilbert space, but it also can hold in situations where the family is not orthogonal and is overcomplete. Furthermore, all functions in our approach are axisymmetric (depending only on the spherical distance) so that they can be used adequately in (rotation) invariant pseudodifferential equations on the frames (ii) Gauss- Weierstrass frames, and (iii) frames consisting of locally supported kernel functions. Abel-Poisson frames form families of harmonic functions and provide us with powerful approximation tools in potential theory. Gauss-Weierstrass frames are intimately related to the diffusion equation on the sphere and play an important role in multiscale descriptions of image processing on the sphere. The third class enables us to discuss spherical Fourier expansions by means of axisymmetric finite elements.Willi Freeden; Michael Schreinerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/736Mon, 03 Apr 2000 00:00:00 +0200