KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Thu, 02 Jun 2005 14:48:00 +0200Thu, 02 Jun 2005 14:48:00 +0200Wavelet Modelling of Regional and Temporal Variations of the EarthÂ´s Gravitational Potential
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1641
This work is dedicated to the wavelet modelling of regional and temporal variations of the Earth's gravitational potential observed by GRACE. In the first part, all required mathematical tools and methods involving spherical wavelets are introduced. Then we apply our method to monthly GRACE gravity fields. A strong seasonal signal can be identified, which is restricted to areas, where large-scale redistributions of continental water mass are expected. This assumption is analyzed and verified by comparing the time series of regionally obtained wavelet coefficients of the gravitational signal originated from hydrology models and the gravitational potential observed by GRACE. The results are in good agreement to previous studies and illustrate that wavelets are an appropriate tool to investigate regional time-variable effects in the gravitational field.Martin J. Fengler; Willi Freeden; Annika Kohlhaas; Volker Michel; Thomas Peterspreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1641Thu, 02 Jun 2005 14:48:00 +0200The Spherical Bernstein Wavelet
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1637
In this work we introduce a new bandlimited spherical wavelet: The Bernstein wavelet. It possesses a couple of interesting properties. To be specific, we are able to construct bandlimited wavelets free of oscillations. The scaling function of this wavelet is investigated with regard to the spherical uncertainty principle, i.e., its localization in the space domain as well as in the momentum domain is calculated and compared to the well-known Shannon scaling function. Surprisingly, they possess the same localization in space although one is highly oscillating whereas the other one shows no oscillatory behavior. Moreover, the Bernstein scaling function turns out to be the first bandlimited scaling function known to the literature whose uncertainty product tends to the minimal value 1.Martin J. Fengler; Willi Freeden; Martin Guttingpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1637Fri, 20 May 2005 12:07:21 +0200A Nonlinear Galerkin Scheme Involving Vector and Tensor Spherical Harmonics for Solving the Incompressible Navier-Stokes Equation on the Sphere
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1561
This work is concerned with a nonlinear Galerkin method for solving the incompressible Navier-Stokes equation on the sphere. It extends the work of Debussche, Marion,Shen, Temam et al. from one-dimensional or toroidal domains to the spherical geometry. In the first part, the method based on type 3 vector spherical harmonics is introduced and convergence is indicated. Further it is shown that the occurring coupling terms involving three vector spherical harmonics can be expressed algebraically in terms of Wigner-3j coefficients. To improve the numerical efficiency and economy we introduce an FFT based pseudo spectral algorithm for computing the Fourier coefficients of the nonlinear advection term. The resulting method scales with O(N^3), if N denotes the maximal spherical harmonic degree. The latter is demonstrated in an extensive numerical example.Martin J. Fengler; Willi Freedenworkingpaperhttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1561Tue, 10 Aug 2004 21:51:42 +0200