KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Fri, 02 Nov 2007 15:03:15 +0100Fri, 02 Nov 2007 15:03:15 +0100Local Modelling of Sea Surface Topography from (Geostrophic) Ocean Flow
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1836
This paper deals with the problem of determining the sea surface topography from geostrophic flow of ocean currents on local domains of the spherical Earth. In mathematical context the problem amounts to the solution of a spherical differential equation relating the surface curl gradient of a scalar field (sea surface topography) to a surface divergence-free vector field(geostrophic ocean flow). At first, a continuous solution theory is presented in the framework of an integral formula involving Green’s function of the spherical Beltrami operator. Different criteria derived from spherical vector analysis are given to investigate uniqueness. Second, for practical applications Green’s function is replaced by a regularized counterpart. The solution is obtained by a convolution of the flow field with a scaled version of the regularized Green function. Calculating locally without boundary correction would lead to errors near the boundary. To avoid these Gibbs phenomenona we additionally consider the boundary integral of the corresponding region on the sphere which occurs in the integral formula of the solution. For reasons of simplicity we discuss a spherical cap first, that means we consider a continuously differentiable (regular) boundary curve. In a second step we concentrate on a more complicated domain with a non continuously differentiable boundary curve, namely a rectangular region. It will turn out that the boundary integral provides a major part for stabilizing and reconstructing the approximation of the solution in our multiscale procedure.Thomas Fehlinger; Willi Freeden; Simone Gramsch; Carsten Mayer; Dominik Michel; Michael Schreinerreporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1836Sun, 11 Feb 2007 15:03:15 +0100Local Multiscale Approximations of Geostrophic Flow: Theoretical Background and Aspects of Scientific Computing
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1634
In modern geoscience, understanding the climate depends on the information about the oceans. Covering two thirds of the Earth, oceans play an important role. Oceanic phenomena are, for example, oceanic circulation, water exchanges between atmosphere, land and ocean or temporal changes of the total water volume. All these features require new methods in constructive approximation, since they are regionally bounded and not globally observable. This article deals with methods of handling data with locally supported basis functions, modeling them in a multiscale scheme involving a wavelet approximation and presenting the main results for the dynamic topography and the geostrophic flow, e.g., in the Northern Atlantic. Further, it is demonstrated that compressional rates of the occurring wavelet transforms can be achieved by use of locally supported wavelets.Willi Freeden; Dominik Michel; Volker Michelpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1634Mon, 09 May 2005 16:04:38 +0200