KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Fri, 04 Jul 2008 17:08:11 +0200Fri, 04 Jul 2008 17:08:11 +0200On the Local Multiscale Determination of the Earth`s Disturbing Potential From Discrete Deflections of the Vertical
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1947
As a first approximation the Earth is a sphere; as a second approximation it may be considered an ellipsoid of revolution. The deviations of the actual Earth's gravity field from the ellipsoidal 'normal' field are so small that they can be understood to be linear. The splitting of the Earth's gravity field into a 'normal' and a remaining small 'disturbing' field considerably simplifies the problem of its determination. Under the assumption of an ellipsoidal Earth model high observational accuracy is achievable only if the deviation (deflection of the vertical) of the physical plumb line, to which measurements refer, from the ellipsoidal normal is not ignored. Hence, the determination of the disturbing potential from known deflections of the vertical is a central problem of physical geodesy. In this paper we propose a new, well-promising method for modelling the disturbing potential locally from the deflections of the vertical. Essential tools are integral formulae on the sphere based on Green's function of the Beltrami operator. The determination of the disturbing potential from deflections of the vertical is formulated as a multiscale procedure involving scale-dependent regularized versions of the surface gradient of the Green function. The modelling process is based on a multiscale framework by use of locally supported surface curl-free vector wavelets.Willi Freeden; Thomas Fehlinger; Carsten Mayer; Michael Schreinerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1947Mon, 07 Apr 2008 17:08:11 +0200Local Modelling of Sea Surface Topography from (Geostrophic) Ocean Flow
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1836
This paper deals with the problem of determining the sea surface topography from geostrophic flow of ocean currents on local domains of the spherical Earth. In mathematical context the problem amounts to the solution of a spherical differential equation relating the surface curl gradient of a scalar field (sea surface topography) to a surface divergence-free vector field(geostrophic ocean flow). At first, a continuous solution theory is presented in the framework of an integral formula involving Green’s function of the spherical Beltrami operator. Different criteria derived from spherical vector analysis are given to investigate uniqueness. Second, for practical applications Green’s function is replaced by a regularized counterpart. The solution is obtained by a convolution of the flow field with a scaled version of the regularized Green function. Calculating locally without boundary correction would lead to errors near the boundary. To avoid these Gibbs phenomenona we additionally consider the boundary integral of the corresponding region on the sphere which occurs in the integral formula of the solution. For reasons of simplicity we discuss a spherical cap first, that means we consider a continuously differentiable (regular) boundary curve. In a second step we concentrate on a more complicated domain with a non continuously differentiable boundary curve, namely a rectangular region. It will turn out that the boundary integral provides a major part for stabilizing and reconstructing the approximation of the solution in our multiscale procedure.Thomas Fehlinger; Willi Freeden; Simone Gramsch; Carsten Mayer; Dominik Michel; Michael Schreinerreporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1836Sun, 11 Feb 2007 15:03:15 +0100A Wavelet Approach to Time-Harmonic Maxwells Equations
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1699
By means of the limit and jump relations of classical potential theory with respect to the vectorial Helmholtz equation a wavelet approach is established on a regular surface. The multiscale procedure is constructed in such a way that the emerging scalar, vectorial and tensorial potential kernels act as scaling functions. Corresponding wavelets are defined via a canonical refinement equation. A tree algorithm for fast decomposition of a complex-valued vector field given on a regular surface is developed based on numerical integration rules. By virtue of this tree algorithm, an effcient numerical method for the solution of vectorial Fredholm integral equations on regular surfaces is discussed in more detail. The resulting multiscale formulation is used to solve boundary-value problems for the time harmonic Maxwell's equations corresponding to regular surfaces.Willi Freeden; Carsten Mayerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1699Tue, 17 Jan 2006 15:54:18 +0100Multiscale Solution for the Molodensky Problem on Regular Telluroidal Surfaces
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1589
Based on the well-known results of classical potential theory, viz. the limit and jump relations for layer integrals, a numerically viable and e±cient multiscale method of approximating the disturbing potential from gravity anomalies is established on regular surfaces, i.e., on telluroids of ellipsoidal or even more structured geometric shape. The essential idea is to use scale dependent regularizations of the layer potentials occurring in the integral formulation of the linearized Molodensky problem to introduce scaling functions and wavelets on the telluroid. As an application of our multiscale approach some numerical examples are presented on an ellipsoidal telluroid.Willi Freeden; Carsten Mayerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1589Thu, 02 Dec 2004 16:53:33 +0100