KLUEDO RSS FeedNeueste Dokumente / Latest documents
https://kluedo.ub.uni-kl.de/index/index/
Mon, 21 Aug 2000 00:00:00 +0200Mon, 21 Aug 2000 00:00:00 +0200Basic Aspects of Geopotential Field Approximation From Satellite-to-Satellite Tracking Data
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1116
The satellite-to-satellite tracking (SST) problems are characterized from mathematical point of view. Uniqueness results are formulated. Moreover, the basic relations are developed between (scalar) approximation of the earth's gravitational potential by "scalar basis systems" and (vectorial) approximation of the gravitational eld by "vectorial basis systems". Finally, the mathematical justication is given for approximating the external geopotential field by finite linear combinations of certain gradient fields (for example, gradient fields of multi-poles) consistent to a given set of SST data.Willi Freeden; Volker Michelpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1116Mon, 21 Aug 2000 00:00:00 +0200Scale Continuous, Scale Discretized and Scale Discrete Harmonic Wavelets for the Outer and the Inner Space of a Sphere and Their Application to an Inverse Problem in Geomathematics
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1046
In this paper we construct a multiscale solution method for the gravimetry problem, which is concerned with the determination of the earth's density distribution from gravitational measurements. For this purpose isotropic scale continuous wavelets for harmonic functions on a ball and on a bounded outer space of a ball, respectively, are constructed. The scales are discretized and the results of numerical calculations based on regularization wavelets are presented. The obtained solutions yield topographical structures of the earth's surface at different levels of localization ranging from continental boundaries to local structures such as Ayer's Rock and the Amazonas area.Volker Michelpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1046Thu, 23 Mar 2000 00:00:00 +0100