KLUEDO RSS FeedNeueste Dokumente / Latest documents
https://kluedo.ub.uni-kl.de/index/index/
Wed, 13 Dec 2006 15:19:35 +0100Wed, 13 Dec 2006 15:19:35 +0100Numerical Aspects of a Spline-Based Multiresolution Recovery of the Harmonic Mass Density out of Gravity Functionals
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1823
We show the numerical applicability of a multiresolution method based on harmonic splines on the 3-dimensional ball which allows the regularized recovery of the harmonic part of the Earth's mass density distribution out of different types of gravity data, e.g. different radial derivatives of the potential, at various positions which need not be located on a common sphere. This approximated harmonic density can be combined with its orthogonal anharmonic complement, e.g. determined out of the splitting function of free oscillations, to an approximation of the whole mass density function. The applicability of the presented tool is demonstrated by several test calculations based on simulated gravity values derived from EGM96. The method yields a multiresolution in the sense that the localization of the constructed spline basis functions can be increased which yields in combination with more data a higher resolution of the resulting spline. Moreover, we show that a locally improved data situation allows a highly resolved recovery in this particular area in combination with a coarse approximation elsewhere which is an essential advantage of this method, e.g. compared to polynomial approximation.Volker Michel; Kerstin Wolfpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1823Wed, 13 Dec 2006 15:19:35 +0100Harmonic Spline-Wavelets on the 3-dimensional Ball and their Application to the Reconstruction of the Earth´s Density Distribution from Gravitational Data at Arbitrarily Shaped Satellite Orbits
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1623
We introduce splines for the approximation of harmonic functions on a 3-dimensional ball. Those splines are combined with a multiresolution concept. More precisely, at each step of improving the approximation we add more data and, at the same time, reduce the hat-width of the used spline basis functions. Finally, a convergence theorem is proved. One possible application, that is discussed in detail, is the reconstruction of the Earth´s density distribution from gravitational data obtained at a satellite orbit. This is an exponentially ill-posed problem where only the harmonic part of the density can be recovered since its orthogonal complement has the potential 0. Whereas classical approaches use a truncated singular value decomposition (TSVD) with the well-known disadvantages like the non-localizing character of the used spherical harmonics and the bandlimitedness of the solution, modern regularization techniques use wavelets allowing a localized reconstruction via convolutions with kernels that are only essentially large in the region of interest. The essential remaining drawback of a TSVD and the wavelet approaches is that the integrals (i.e. the inner product in case of a TSVD and the convolution in case of wavelets) are calculated on a spherical orbit, which is not given in reality. Thus, simplifying modelling assumptions, that certainly include a modelling error, have to be made. The splines introduced here have the important advantage, that the given data need not be located on a sphere but may be (almost) arbitrarily distributed in the outer space of the Earth. This includes, in particular, the possibility to mix data from different satellite missions (different orbits, different derivatives of the gravitational potential) in the calculation of the Earth´s density distribution. Moreover, the approximating splines can be calculated at varying resolution scales, where the differences for increasing the resolution can be computed with the introduced spline-wavelet technique.Martin J. Fengler; Dominik Michel; Volker Michelpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1623Wed, 23 Mar 2005 13:00:11 +0100