KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Tue, 03 Jul 2001 00:00:00 +0200Tue, 03 Jul 2001 00:00:00 +0200Equivalent of a Thouless energy in lattice QCD Dirac spectra
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1308
Abstract: Random matrix theory (RMT) is a powerful statistical tool to model spectral fluctuations. In addition, RMT provides efficient means to separate different scales in spectra. Recently RMT has found application in quantum chromodynamics (QCD). In mesoscopic physics, the Thouless energy sets the universal scale for which RMT applies. We try to identify the equivalent of a Thouless energy in complete spectra of the QCD Dirac operator with staggered fermions and SU_(2) lattice gauge fields. Comparing lattice data with RMT predictions we find deviations which allow us to give an estimate for this scale.M.E. Berbenni; T. Guhr; J.-Z. Ma; S. Meyer; T. Wilkepreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1308Tue, 03 Jul 2001 00:00:00 +0200Statistical analysis and the equivalent of a Thouless energy in lattice QCD Dirac spectra
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1312
Abstract: Random Matrix Theory (RMT) is a powerful statistical tool to model spectral fluctuations. This approach has also found fruitful application in Quantum Chromodynamics (QCD). Importantly, RMT provides very efficient means to separate different scales in the spectral fluctuations. We try to identify the equivalent of a Thouless energy in complete spectra of the QCD Dirac operator for staggered fermions from SU(2) lattice gauge theory for different lattice size and gauge couplings. We focus on the bulk of the spectrum. In disordered systems, the Thouless energy sets the universal scale for which RMT applies. This relates to recent theoretical studies which suggest a strong analogy between QCD and disordered systems. The wealth of data allows us to analyze several statistical measures in the bulk of the spectrum with high quality. We find deviations which allows us to give an estimate for this universal scale. Other deviations than these are seen whose possible origin is discussed. Moreover, we work out higher order correlators as well, in particular three-point correlation functions.T. Guhr; J.-Z. Ma; S. Meyer; T. Wilkepreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1312Tue, 03 Jul 2001 00:00:00 +0200