KLUEDO RSS FeedNeueste Dokumente / Latest documents
https://kluedo.ub.uni-kl.de/index/index/
Wed, 21 Jul 2010 13:45:54 +0200Wed, 21 Jul 2010 13:45:54 +0200A discrete mechanics approach to Cosserat rod theory – Part 1: static equilibria
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2206
A theory of discrete Cosserat rods is formulated in the language of discrete Lagrangian mechanics. By exploiting Kirchho's kinetic analogy, the potential energy density of a rod is a function on the tangent bundle of the conguration manifold and thus formally corresponds to the Lagrangian function of a dynamical system. The equilibrium equations are derived from a variational principle using a formulation that involves null{space matrices. In this formulation, no Lagrange multipliers are necessary to enforce orthonormality of the directors. Noether's theorem relates rst integrals of the equilibrium equations to Lie group actions on the conguration bundle, so{called symmetries. The symmetries relevant for rod mechanics are frame{indierence, isotropy and uniformity. We show that a completely analogous and self{contained theory of discrete rods can be formulated in which the arc{length is a discrete variable ab initio. In this formulation, the potential energy density is dened directly on pairs of points along the arc{length of the rod, in analogy to Veselov's discrete reformulation of Lagrangian mechanics. A discrete version of Noether's theorem then identies exact rst integrals of the discrete equilibrium equations. These exact conservation properties confer the discrete solutions accuracy and robustness, as demonstrated by selected examples of application. Copyright c 2010 John Wiley & Sons, Ltd.P. Jung; S. Leyendecker; J. Linn; M. Ortizreporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2206Wed, 21 Jul 2010 13:45:54 +0200Discrete Lagrangian mechanics and geometrically exact Cosserat rods
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2093
Inspired by Kirchhoff’s kinetic analogy, the special Cosserat theory of rods is formulatedin the language of Lagrangian mechanics. A static rod corresponds to an abstract Lagrangian system where the energy density takes the role of the Lagrangian function. The equilibrium equations are derived from a variational principle. Noether’s theorem relates their first integrals to frame-indifference, isotropy and uniformity. These properties can be formulated in terms of Lie group symmetries. The rotational degrees of freedom, present in the geometrically exact beam theory, are represented in terms of orthonormal director triads. To reduce the number of unknowns, Lagrange multipliers associated with the orthonormality constraints are eliminated using null-space matrices. This is done both in the continuous and in the discrete setting. The discrete equilibrium equations are used to compute discrete rod configurations, where different types of boundary conditions can be handled.P. Jung; S. Leyendecker; J. Linn; M. Ortizreporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2093Wed, 20 May 2009 14:51:18 +0200