KLUEDO RSS FeedNeueste Dokumente / Latest documents
https://kluedo.ub.uni-kl.de/index/index/
Sat, 04 Mar 2000 00:00:00 +0200Sat, 04 Mar 2000 00:00:00 +0200On Bisectors for Different Distance Functions
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/517
Let rC and rD be two convexdistance funtions in the plane with convex unit balls C and D. Given two points, p and q, we investigate the bisector, B(p,q), of p and q, where distance from p is measured by rC and distance from q by rD. We provide the following results. B(p,q) may consist of many connected components whose precise number can be derived from the intersection of the unit balls, C nd D. The bisector can contain bounded or unbounded 2-dimensional areas. Even more surprising, pieces of the bisector may appear inside the region of all points closer to p than to q. If C and D are convex polygons over m and m vertices, respectively, the bisector B(p,q) can consist of at most min(m,n) connected components which contain at most 2(m+n) vertices altogether. The former bound is tight, the latter is tight up to an additive constant. We also present an optimal O(m+n) time algorithm for computing the bisector.Christian Icking; Rolf Klein; Lihong Ma; Stefan Nickel; Ansgar Weisslerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/517Mon, 03 Apr 2000 00:00:00 +0200Solving nonconvex planar location problems by finite dominating sets
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/973
It is well-known that some of the classical location problems with polyhedral gauges can be solved in polynomial time by finding a finite dominating set, i.e. a finite set of candidates guaranteed to contain at least one optimal location. In this paper it is first established that this result holds for a much larger class of problems than currently considered in the literature. The model for which this result can be proven includes, for instance, location problems with attraction and repulsion, and location-allocation problems. Next, it is shown that the approximation of general gauges by polyhedral ones in the objective function of our general model can be analyzed with regard to the subsequent error in the optimal objective value. For the approximation problem two different approaches are described, the sandwich procedure and the greedy algorithm. Both of these approaches lead - for fixed epsilon - to polynomial approximation algorithms with accuracy epsilon for solving the general model considered in this paper.Emilio Carrizosa; Horst W. Hamacher; Rolf Klein; Stefan Nickelpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/973Fri, 18 Feb 2000 00:00:00 +0100