KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Mon, 02 Jul 2001 00:00:00 +0200Mon, 02 Jul 2001 00:00:00 +0200Optical pumping in dense atomic media: Limitations due to reabsorption of spontaneously emitted photons
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1300
Abstract: Resonant optical pumping in dense atomic media is discussed, where the absorption length is less than the smallest characteristic dimension of the sample. It is shown that reabsorption and multiple scattering of spontaneous photons (radiation trapping) can substantially slow down the rate of optical pumping. A very slow relaxation out of the target state of the pump process is then sufficient to make optical pumping impossible. As model systems an inhomogeneously and a radiatively broadened 3-level system resonantly driven with a strong broad-band pump field are considered.Michael Fleischhauerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1300Mon, 02 Jul 2001 00:00:00 +0200Long-time dynamics of spontaneous parametric down-conversion and quantum limitations of conversion effciency
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1302
Abstract: We analyze the long-time quantum dynamics of degenerate parametric down-conversion from an initial sub-harmonic vacuum (spontaenous down-conversion). Standard linearization of the Heisenberg equations of motions fails in this case, since it is based on an expansion around an unstable classical solution and neglects pump depletion. Introducing a mean-field approximation we find a periodic exchange of energy between the pump and subharmonic mode goverened by an anharmonic pendulum equation. From this equation the optimum interaction time or crystal length for maximum conversion can be determined. A numerical integration of the 2-mode SchrÃ¶dinger equation using a dynamically optimized basis of displaced and squeezed number states verifies the characteristic times predicted by the mean-field approximation. In contrast to semiclassical and mean-field predictions it is found that quantum uctuations of the pump mode lead to a substantial limitation of the efficiency of parametric down-conversion.Michael Fleischhauer; Oliver Veitspreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1302Mon, 02 Jul 2001 00:00:00 +0200Radiative atom-atom interactions in optically dense media: Quantum corrections to the Lorentz-Lorenz formula
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1303
Abstract: Generalized single-atom Maxwell-Bloch equations for optically dense media are derived taking into account non-cooperative radiative atom-atom interactions. Applying a Gaussian approximation and formally eliminating the degrees of freedom of the quantized radiation field and of all but a probe atom leads to an effective time-evolution operator for the probe atom. The mean coherent amplitude of the local field seen by the atom is shown to be given by the classical Lorentz-Lorenz relation. The second-order correlations of the field lead to terms that describe relaxation or pump processes and level shifts due to multiple scattering or reabsorption of spontaneously emitted photons. In the Markov limit a non-linear and nonlocal single-atom density matrix equation is derived. To illustrate the effects of the quantum corrections we discuss amplified spontaneous emission and radiation trapping in a dense ensemble of initially inverted two-level atoms and the effects of radiative interactions on intrinsic optical bistability in coherently driven systems.Michael Fleischhauer; Susanne F. Yelinpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1303Mon, 02 Jul 2001 00:00:00 +0200Intracavity Electromagnetically Induced Transparency
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1214
Abstract: The effect of intracavity Electromagnetically Induced Transparency on the properties of optical resonators and active laser devices is discussed theoretically. A pronounced frequency pulling and cavity linewidth narrowing are predicted. The effect can be used to substantially reduce classical and quantum phase noise of the beat-note of optical oscillators. Fundamental limits of this stabilization mechanism are discussed as well as its potential application to high-resolution spectroscopy.Mikhail D. Lukin; Michael Fleischhauer; Marlan O. Scully; Vladimir L. Velichanskypreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1214Tue, 15 May 2001 00:00:00 +0200