KLUEDO RSS FeedNeueste Dokumente / Latest documents
https://kluedo.ub.uni-kl.de/index/index/
Sat, 13 Sep 2003 09:34:52 +0200Sat, 13 Sep 2003 09:34:52 +0200Cauchy-Navier Wavelet Solvers and Their Application in Deformation Analysis
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1432
The focus of this work has been to develop two families of wavelet solvers for the inner displacement boundary-value problem of elastostatics. Our methods are particularly suitable for the deformation analysis corresponding to geoscientifically relevant (regular) boundaries like sphere, ellipsoid or the actual Earth's surface. The first method, a spatial approach to wavelets on a regular (boundary) surface, is established for the classical (inner) displacement problem. Starting from the limit and jump relations of elastostatics we formulate scaling functions and wavelets within the framework of the Cauchy-Navier equation. Based on numerical integration rules a tree algorithm is constructed for fast wavelet computation. This method can be viewed as a first attempt to "short-wavelength modelling", i.e. high resolution of the fine structure of displacement fields. The second technique aims at a suitable wavelet approximation associated to Green's integral representation for the displacement boundary-value problem of elastostatics. The starting points are tensor product kernels defined on Cauchy-Navier vector fields. We come to scaling functions and a spectral approach to wavelets for the boundary-value problems of elastostatics associated to spherical boundaries. Again a tree algorithm which uses a numerical integration rule on bandlimited functions is established to reduce the computational effort. For numerical realization for both methods, multiscale deformation analysis is investigated for the geoscientifically relevant case of a spherical boundary using test examples. Finally, the applicability of our wavelet concepts is shown by considering the deformation analysis of a particular region of the Earth, viz. Nevada, using surface displacements provided by satellite observations. This represents the first step towards practical applications.Madalagama Karawitage Abeyratnedoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1432Sat, 13 Sep 2003 09:34:52 +0200